Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/scalar/r2cb/hc2cb2_20.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/scalar/r2cb/hc2cb2_20.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,1087 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:42:02 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_hc2c.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 20 -dif -name hc2cb2_20 -include hc2cb.h */ + +/* + * This function contains 276 FP additions, 198 FP multiplications, + * (or, 136 additions, 58 multiplications, 140 fused multiply/add), + * 160 stack variables, 4 constants, and 80 memory accesses + */ +#include "hc2cb.h" + +static void hc2cb2_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP618033988, +0.618033988749894848204586834365638117720309180); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(80, rs)) { + E T1S, T1O, T1s, TI, T24, T1Y, T2g, T2k, TS, TR, T1I, T26, T1o, T20, T1F; + E T25, TT, T1Z; + { + E TD, TH, TE, T1L, T1N, T1X, TG, T1V, T2Y, T2b, T29, T2s, T36, T3e, T31; + E T2o, T3b, T5b, T2c, T2U, T4y, T4u, T2f, T5g, T47, T5p, T4b, T5l; + { + E T1r, TF, T2T, T1M, T1R, T2X, T2r, T4x; + TD = W[0]; + TH = W[3]; + TE = W[2]; + T1L = W[6]; + T1N = W[7]; + T1r = TD * TH; + TF = TD * TE; + T2T = TE * T1L; + T1M = TD * T1L; + T1R = TD * T1N; + T2X = TE * T1N; + T1X = W[5]; + TG = W[1]; + T1V = W[4]; + T2Y = FNMS(TH, T1L, T2X); + T2r = TD * T1X; + { + E T23, T2n, T1W, T2a; + T23 = TE * T1X; + T1S = FNMS(TG, T1L, T1R); + T1O = FMA(TG, T1N, T1M); + T2b = FMA(TG, TE, T1r); + T1s = FNMS(TG, TE, T1r); + T29 = FNMS(TG, TH, TF); + TI = FMA(TG, TH, TF); + T2n = TD * T1V; + T1W = TE * T1V; + T2s = FMA(TG, T1V, T2r); + T36 = FNMS(TG, T1V, T2r); + T3e = FMA(TH, T1V, T23); + T24 = FNMS(TH, T1V, T23); + T2a = T29 * T1V; + T31 = FMA(TG, T1X, T2n); + T2o = FNMS(TG, T1X, T2n); + T3b = FNMS(TH, T1X, T1W); + T1Y = FMA(TH, T1X, T1W); + T5b = FNMS(T2b, T1X, T2a); + T2c = FMA(T2b, T1X, T2a); + T2U = FMA(TH, T1N, T2T); + } + T4x = T29 * T1N; + { + E T4t, T2d, T2j, T2e; + T4t = T29 * T1L; + T2e = T29 * T1X; + T4y = FNMS(T2b, T1L, T4x); + T4u = FMA(T2b, T1N, T4t); + T2f = FNMS(T2b, T1V, T2e); + T5g = FMA(T2b, T1V, T2e); + T2d = T2c * T1L; + T2j = T2c * T1N; + T47 = TI * T1V; + T2g = FMA(T2f, T1N, T2d); + T2k = FNMS(T2f, T1L, T2j); + T5p = TI * T1N; + T4b = TI * T1X; + T5l = TI * T1L; + } + } + { + E T4f, T48, T4c, T4k, T5m, T5q, T3V, T4V, TJ, T7, T3j, T4B, T2H, T1z, T3q; + E T43, T1n, T52, T42, T3x, T53, T2D, T18, T2A, T1H, T4R, T4X, T4W, T4O, T1G; + E T2O, T3I, T2P, T3P, T2K, T2M, T1C, T1E, TC, T2w, T40, T3Y, T4K, T4I, TQ; + { + E T3h, T3, T1w, T3T, T1v, T3U, T6, T1x; + { + E T1t, T1u, T1, T2, T4, T5; + T1 = Rp[0]; + T2 = Rm[WS(rs, 9)]; + T1t = Ip[0]; + T4f = FNMS(T1s, T1X, T47); + T48 = FMA(T1s, T1X, T47); + T4c = FNMS(T1s, T1V, T4b); + T4k = FMA(T1s, T1V, T4b); + T5m = FMA(T1s, T1N, T5l); + T5q = FNMS(T1s, T1L, T5p); + T3h = T1 - T2; + T3 = T1 + T2; + T1u = Im[WS(rs, 9)]; + T4 = Rp[WS(rs, 5)]; + T5 = Rm[WS(rs, 4)]; + T1w = Ip[WS(rs, 5)]; + T3T = T1t + T1u; + T1v = T1t - T1u; + T3U = T4 - T5; + T6 = T4 + T5; + T1x = Im[WS(rs, 4)]; + } + { + E T3L, T4M, TK, Te, T3m, T4C, T2y, T1f, T3H, T4Q, TO, TA, T3w, T4G, T2C; + E T17, T3O, T4N, TL, Tl, T3p, T4D, T2z, T1m, T3r, Tp, TX, T3C, TW, T3D; + E Ts, TY; + { + E T3u, Tw, T14, T3G, T13, T3F, Tz, T15; + { + E T3k, Ta, T1c, T3J, T1b, T3K, Td, T1d; + { + E T19, T1a, Tb, Tc; + { + E T8, T3i, T1y, T9; + T8 = Rp[WS(rs, 4)]; + T3V = T3T - T3U; + T4V = T3U + T3T; + TJ = T3 - T6; + T7 = T3 + T6; + T3i = T1w + T1x; + T1y = T1w - T1x; + T9 = Rm[WS(rs, 5)]; + T19 = Ip[WS(rs, 4)]; + T3j = T3h + T3i; + T4B = T3h - T3i; + T2H = T1v + T1y; + T1z = T1v - T1y; + T3k = T8 - T9; + Ta = T8 + T9; + T1a = Im[WS(rs, 5)]; + } + Tb = Rp[WS(rs, 9)]; + Tc = Rm[0]; + T1c = Ip[WS(rs, 9)]; + T3J = T19 + T1a; + T1b = T19 - T1a; + T3K = Tb - Tc; + Td = Tb + Tc; + T1d = Im[0]; + } + { + E T11, T12, Tx, Ty; + { + E Tu, T3l, T1e, Tv; + Tu = Rm[WS(rs, 7)]; + T3L = T3J - T3K; + T4M = T3K + T3J; + TK = Ta - Td; + Te = Ta + Td; + T3l = T1c + T1d; + T1e = T1c - T1d; + Tv = Rp[WS(rs, 2)]; + T11 = Ip[WS(rs, 2)]; + T3m = T3k + T3l; + T4C = T3k - T3l; + T2y = T1b + T1e; + T1f = T1b - T1e; + T3u = Tu - Tv; + Tw = Tu + Tv; + T12 = Im[WS(rs, 7)]; + } + Tx = Rm[WS(rs, 2)]; + Ty = Rp[WS(rs, 7)]; + T14 = Ip[WS(rs, 7)]; + T3G = T11 + T12; + T13 = T11 - T12; + T3F = Tx - Ty; + Tz = Tx + Ty; + T15 = Im[WS(rs, 2)]; + } + } + { + E T3n, Th, T1j, T3N, T1i, T3M, Tk, T1k; + { + E T1g, T1h, Ti, Tj; + { + E Tf, T3v, T16, Tg; + Tf = Rm[WS(rs, 3)]; + T3H = T3F + T3G; + T4Q = T3F - T3G; + TO = Tw - Tz; + TA = Tw + Tz; + T3v = T14 + T15; + T16 = T14 - T15; + Tg = Rp[WS(rs, 6)]; + T1g = Ip[WS(rs, 6)]; + T3w = T3u - T3v; + T4G = T3u + T3v; + T2C = T13 + T16; + T17 = T13 - T16; + T3n = Tf - Tg; + Th = Tf + Tg; + T1h = Im[WS(rs, 3)]; + } + Ti = Rp[WS(rs, 1)]; + Tj = Rm[WS(rs, 8)]; + T1j = Ip[WS(rs, 1)]; + T3N = T1g + T1h; + T1i = T1g - T1h; + T3M = Ti - Tj; + Tk = Ti + Tj; + T1k = Im[WS(rs, 8)]; + } + { + E TU, TV, Tq, Tr; + { + E Tn, T3o, T1l, To; + Tn = Rp[WS(rs, 8)]; + T3O = T3M + T3N; + T4N = T3M - T3N; + TL = Th - Tk; + Tl = Th + Tk; + T3o = T1j + T1k; + T1l = T1j - T1k; + To = Rm[WS(rs, 1)]; + TU = Ip[WS(rs, 8)]; + T3p = T3n + T3o; + T4D = T3n - T3o; + T2z = T1i + T1l; + T1m = T1i - T1l; + T3r = Tn - To; + Tp = Tn + To; + TV = Im[WS(rs, 1)]; + } + Tq = Rm[WS(rs, 6)]; + Tr = Rp[WS(rs, 3)]; + TX = Ip[WS(rs, 3)]; + T3C = TU + TV; + TW = TU - TV; + T3D = Tq - Tr; + Ts = Tq + Tr; + TY = Im[WS(rs, 6)]; + } + } + } + { + E T3E, Tt, T1A, T4E, T4H, T2J, T1B, T2I, TM, TP; + { + E T4P, TN, T3s, TZ; + T3q = T3m + T3p; + T43 = T3m - T3p; + T3E = T3C - T3D; + T4P = T3D + T3C; + TN = Tp - Ts; + Tt = Tp + Ts; + T3s = TX + TY; + TZ = TX - TY; + T1n = T1f - T1m; + T1A = T1f + T1m; + T4E = T4C + T4D; + T52 = T4C - T4D; + { + E T3t, T4F, T2B, T10; + T3t = T3r - T3s; + T4F = T3r + T3s; + T2B = TW + TZ; + T10 = TW - TZ; + T42 = T3t - T3w; + T3x = T3t + T3w; + T4H = T4F + T4G; + T53 = T4F - T4G; + T2D = T2B - T2C; + T2J = T2B + T2C; + T1B = T10 + T17; + T18 = T10 - T17; + T2A = T2y - T2z; + T2I = T2y + T2z; + TM = TK + TL; + T1H = TK - TL; + } + T4R = T4P - T4Q; + T4X = T4P + T4Q; + T4W = T4M + T4N; + T4O = T4M - T4N; + T1G = TN - TO; + TP = TN + TO; + } + { + E Tm, T3X, TB, T3W; + Tm = Te + Tl; + T2O = Te - Tl; + T3I = T3E + T3H; + T3X = T3E - T3H; + TB = Tt + TA; + T2P = Tt - TA; + T3P = T3L + T3O; + T3W = T3L - T3O; + T2K = T2I + T2J; + T2M = T2I - T2J; + T1C = T1A + T1B; + T1E = T1A - T1B; + TC = Tm + TB; + T2w = Tm - TB; + T40 = T3W - T3X; + T3Y = T3W + T3X; + T4K = T4E - T4H; + T4I = T4E + T4H; + TS = TM - TP; + TQ = TM + TP; + } + } + } + } + { + E T3A, T3y, T50, T1D, T2t, T2p, T4J, T5t, T5v, T4Z, T4Y; + Rp[0] = T7 + TC; + T3A = T3q - T3x; + T3y = T3q + T3x; + T50 = T4W - T4X; + T4Y = T4W + T4X; + Rm[0] = T2H + T2K; + T1D = FNMS(KP250000000, T1C, T1z); + T2t = T1z + T1C; + T2p = TJ + TQ; + TR = FNMS(KP250000000, TQ, TJ); + T4J = FNMS(KP250000000, T4I, T4B); + T5t = T4B + T4I; + T5v = T4V + T4Y; + T4Z = FNMS(KP250000000, T4Y, T4V); + { + E T4m, T44, T4i, T4p, T49, T3R, T4j, T4a, T3S, T4l, T41, T4q; + { + E T3z, T4v, T4w, T3Z, T4z; + T3z = FNMS(KP250000000, T3y, T3j); + T4v = T3j + T3y; + { + E T2u, T2q, T5u, T5w; + T2u = T2s * T2p; + T2q = T2o * T2p; + T5u = T2c * T5t; + T5w = T2c * T5v; + Rm[WS(rs, 5)] = FMA(T2o, T2t, T2u); + Rp[WS(rs, 5)] = FNMS(T2s, T2t, T2q); + Ip[WS(rs, 2)] = FNMS(T2f, T5v, T5u); + Im[WS(rs, 2)] = FMA(T2f, T5t, T5w); + T4w = T4u * T4v; + } + T3Z = FNMS(KP250000000, T3Y, T3V); + T4z = T3V + T3Y; + { + E T3Q, T4h, T4A, T4g, T3B; + T3Q = FNMS(KP618033988, T3P, T3I); + T4h = FMA(KP618033988, T3I, T3P); + Ip[WS(rs, 7)] = FNMS(T4y, T4z, T4w); + T4A = T4u * T4z; + T4m = FMA(KP618033988, T42, T43); + T44 = FNMS(KP618033988, T43, T42); + T4g = FMA(KP559016994, T3A, T3z); + T3B = FNMS(KP559016994, T3A, T3z); + Im[WS(rs, 7)] = FMA(T4y, T4v, T4A); + T4i = FNMS(KP951056516, T4h, T4g); + T4p = FMA(KP951056516, T4h, T4g); + T49 = FMA(KP951056516, T3Q, T3B); + T3R = FNMS(KP951056516, T3Q, T3B); + } + T4j = T4f * T4i; + T4a = T48 * T49; + T3S = TE * T3R; + T4l = FMA(KP559016994, T40, T3Z); + T41 = FNMS(KP559016994, T40, T3Z); + T4q = T1L * T4p; + } + { + E T5d, T4S, T54, T5i, T4L, T5c; + T5d = FNMS(KP618033988, T4O, T4R); + T4S = FMA(KP618033988, T4R, T4O); + { + E T4n, T4r, T4d, T45; + T4n = FMA(KP951056516, T4m, T4l); + T4r = FNMS(KP951056516, T4m, T4l); + T4d = FNMS(KP951056516, T44, T41); + T45 = FMA(KP951056516, T44, T41); + { + E T4o, T4s, T4e, T46; + T4o = T4f * T4n; + Ip[WS(rs, 5)] = FNMS(T4k, T4n, T4j); + T4s = T1L * T4r; + Ip[WS(rs, 9)] = FNMS(T1N, T4r, T4q); + T4e = T48 * T4d; + Ip[WS(rs, 3)] = FNMS(T4c, T4d, T4a); + T46 = TE * T45; + Ip[WS(rs, 1)] = FNMS(TH, T45, T3S); + Im[WS(rs, 5)] = FMA(T4k, T4i, T4o); + Im[WS(rs, 9)] = FMA(T1N, T4p, T4s); + Im[WS(rs, 3)] = FMA(T4c, T49, T4e); + Im[WS(rs, 1)] = FMA(TH, T3R, T46); + } + } + T54 = FMA(KP618033988, T53, T52); + T5i = FNMS(KP618033988, T52, T53); + T4L = FMA(KP559016994, T4K, T4J); + T5c = FNMS(KP559016994, T4K, T4J); + { + E T38, T2Q, T33, T2E, T2v, T37, T2N, T5h, T51, T2L, T2x, T32; + T38 = FNMS(KP618033988, T2O, T2P); + T2Q = FMA(KP618033988, T2P, T2O); + T5h = FNMS(KP559016994, T50, T4Z); + T51 = FMA(KP559016994, T50, T4Z); + { + E T5e, T5n, T57, T4T; + T5e = FNMS(KP951056516, T5d, T5c); + T5n = FMA(KP951056516, T5d, T5c); + T57 = FMA(KP951056516, T4S, T4L); + T4T = FNMS(KP951056516, T4S, T4L); + { + E T5j, T5r, T59, T55; + T5j = FMA(KP951056516, T5i, T5h); + T5r = FNMS(KP951056516, T5i, T5h); + T59 = FNMS(KP951056516, T54, T51); + T55 = FMA(KP951056516, T54, T51); + { + E T5f, T5o, T58, T4U; + T5f = T5b * T5e; + T5o = T5m * T5n; + T58 = T1V * T57; + T4U = TD * T4T; + { + E T5k, T5s, T5a, T56; + T5k = T5b * T5j; + T5s = T5m * T5r; + T5a = T1V * T59; + T56 = TD * T55; + Ip[WS(rs, 6)] = FNMS(T5g, T5j, T5f); + Ip[WS(rs, 8)] = FNMS(T5q, T5r, T5o); + Ip[WS(rs, 4)] = FNMS(T1X, T59, T58); + Ip[0] = FNMS(TG, T55, T4U); + Im[WS(rs, 6)] = FMA(T5g, T5e, T5k); + Im[WS(rs, 8)] = FMA(T5q, T5n, T5s); + Im[WS(rs, 4)] = FMA(T1X, T57, T5a); + Im[0] = FMA(TG, T4T, T56); + } + } + } + } + T2L = FNMS(KP250000000, T2K, T2H); + T33 = FNMS(KP618033988, T2A, T2D); + T2E = FMA(KP618033988, T2D, T2A); + T2v = FNMS(KP250000000, TC, T7); + T37 = FNMS(KP559016994, T2M, T2L); + T2N = FMA(KP559016994, T2M, T2L); + T1I = FNMS(KP618033988, T1H, T1G); + T26 = FMA(KP618033988, T1G, T1H); + T2x = FMA(KP559016994, T2w, T2v); + T32 = FNMS(KP559016994, T2w, T2v); + { + E T3f, T39, T2R, T2Z; + T3f = FNMS(KP951056516, T38, T37); + T39 = FMA(KP951056516, T38, T37); + T2R = FNMS(KP951056516, T2Q, T2N); + T2Z = FMA(KP951056516, T2Q, T2N); + { + E T3c, T34, T2F, T2V; + T3c = FMA(KP951056516, T33, T32); + T34 = FNMS(KP951056516, T33, T32); + T2F = FMA(KP951056516, T2E, T2x); + T2V = FNMS(KP951056516, T2E, T2x); + { + E T3a, T35, T3g, T3d; + T3a = T36 * T34; + T35 = T31 * T34; + T3g = T3e * T3c; + T3d = T3b * T3c; + { + E T30, T2W, T2S, T2G; + T30 = T2Y * T2V; + T2W = T2U * T2V; + T2S = T2b * T2F; + T2G = T29 * T2F; + Rm[WS(rs, 4)] = FMA(T31, T39, T3a); + Rp[WS(rs, 4)] = FNMS(T36, T39, T35); + Rm[WS(rs, 6)] = FMA(T3b, T3f, T3g); + Rp[WS(rs, 6)] = FNMS(T3e, T3f, T3d); + Rm[WS(rs, 8)] = FMA(T2U, T2Z, T30); + Rp[WS(rs, 8)] = FNMS(T2Y, T2Z, T2W); + Rm[WS(rs, 2)] = FMA(T29, T2R, T2S); + Rp[WS(rs, 2)] = FNMS(T2b, T2R, T2G); + } + } + } + } + T1o = FNMS(KP618033988, T1n, T18); + T20 = FMA(KP618033988, T18, T1n); + T1F = FNMS(KP559016994, T1E, T1D); + T25 = FMA(KP559016994, T1E, T1D); + } + } + } + } + } + } + TT = FNMS(KP559016994, TS, TR); + T1Z = FMA(KP559016994, TS, TR); + { + E T2l, T27, T1J, T1T; + T2l = FNMS(KP951056516, T26, T25); + T27 = FMA(KP951056516, T26, T25); + T1J = FNMS(KP951056516, T1I, T1F); + T1T = FMA(KP951056516, T1I, T1F); + { + E T2h, T21, T1p, T1P; + T2h = FMA(KP951056516, T20, T1Z); + T21 = FNMS(KP951056516, T20, T1Z); + T1p = FMA(KP951056516, T1o, TT); + T1P = FNMS(KP951056516, T1o, TT); + { + E T28, T22, T2m, T2i; + T28 = T24 * T21; + T22 = T1Y * T21; + T2m = T2k * T2h; + T2i = T2g * T2h; + { + E T1U, T1Q, T1K, T1q; + T1U = T1S * T1P; + T1Q = T1O * T1P; + T1K = T1s * T1p; + T1q = TI * T1p; + Rm[WS(rs, 3)] = FMA(T1Y, T27, T28); + Rp[WS(rs, 3)] = FNMS(T24, T27, T22); + Rm[WS(rs, 7)] = FMA(T2g, T2l, T2m); + Rp[WS(rs, 7)] = FNMS(T2k, T2l, T2i); + Rm[WS(rs, 9)] = FMA(T1O, T1T, T1U); + Rp[WS(rs, 9)] = FNMS(T1S, T1T, T1Q); + Rm[WS(rs, 1)] = FMA(TI, T1J, T1K); + Rp[WS(rs, 1)] = FNMS(T1s, T1J, T1q); + } + } + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_CEXP, 1, 1}, + {TW_CEXP, 1, 3}, + {TW_CEXP, 1, 9}, + {TW_CEXP, 1, 19}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 20, "hc2cb2_20", twinstr, &GENUS, {136, 58, 140, 0} }; + +void X(codelet_hc2cb2_20) (planner *p) { + X(khc2c_register) (p, hc2cb2_20, &desc, HC2C_VIA_RDFT); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 20 -dif -name hc2cb2_20 -include hc2cb.h */ + +/* + * This function contains 276 FP additions, 164 FP multiplications, + * (or, 204 additions, 92 multiplications, 72 fused multiply/add), + * 137 stack variables, 4 constants, and 80 memory accesses + */ +#include "hc2cb.h" + +static void hc2cb2_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP587785252, +0.587785252292473129168705954639072768597652438); + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(80, rs)) { + E TD, TG, TE, TH, TJ, T1t, T27, T25, T1T, T1R, T1V, T2j, T2Z, T21, T2X; + E T2T, T2n, T2P, T3V, T41, T3R, T3X, T29, T2c, T4H, T4L, T1L, T1M, T1N, T2d; + E T4R, T1P, T4P, T49, T2N, T2f, T47, T2L; + { + E T1U, T2l, T1Z, T2i, T1S, T2m, T20, T2h; + { + E TF, T1s, TI, T1r; + TD = W[0]; + TG = W[1]; + TE = W[2]; + TH = W[3]; + TF = TD * TE; + T1s = TG * TE; + TI = TG * TH; + T1r = TD * TH; + TJ = TF + TI; + T1t = T1r - T1s; + T27 = T1r + T1s; + T25 = TF - TI; + T1T = W[5]; + T1U = TH * T1T; + T2l = TD * T1T; + T1Z = TE * T1T; + T2i = TG * T1T; + T1R = W[4]; + T1S = TE * T1R; + T2m = TG * T1R; + T20 = TH * T1R; + T2h = TD * T1R; + } + T1V = T1S + T1U; + T2j = T2h - T2i; + T2Z = T1Z + T20; + T21 = T1Z - T20; + T2X = T1S - T1U; + T2T = T2l - T2m; + T2n = T2l + T2m; + T2P = T2h + T2i; + { + E T3T, T3U, T3P, T3Q; + T3T = TJ * T1T; + T3U = T1t * T1R; + T3V = T3T - T3U; + T41 = T3T + T3U; + T3P = TJ * T1R; + T3Q = T1t * T1T; + T3R = T3P + T3Q; + T3X = T3P - T3Q; + { + E T26, T28, T2a, T2b; + T26 = T25 * T1R; + T28 = T27 * T1T; + T29 = T26 + T28; + T2a = T25 * T1T; + T2b = T27 * T1R; + T2c = T2a - T2b; + T4H = T26 - T28; + T4L = T2a + T2b; + T1L = W[6]; + T1M = W[7]; + T1N = FMA(TD, T1L, TG * T1M); + T2d = FMA(T29, T1L, T2c * T1M); + T4R = FNMS(T1t, T1L, TJ * T1M); + T1P = FNMS(TG, T1L, TD * T1M); + T4P = FMA(TJ, T1L, T1t * T1M); + T49 = FNMS(T27, T1L, T25 * T1M); + T2N = FNMS(TH, T1L, TE * T1M); + T2f = FNMS(T2c, T1L, T29 * T1M); + T47 = FMA(T25, T1L, T27 * T1M); + T2L = FMA(TE, T1L, TH * T1M); + } + } + } + { + E T7, T4i, T4x, TK, T1D, T3i, T3E, T2D, T19, T3L, T3M, T1o, T2x, T4C, T4B; + E T2u, T1v, T4r, T4o, T1u, T2H, T37, T2I, T3e, T3p, T3w, T3x, Tm, TB, TC; + E T4u, T4v, T4y, T2A, T2B, T2E, T1E, T1F, T1G, T4d, T4g, T4j, T3F, T3G, T3H; + E TN, TQ, TR, T48, T4a; + { + E T3, T3g, T1z, T3C, T6, T3D, T1C, T3h; + { + E T1, T2, T1x, T1y; + T1 = Rp[0]; + T2 = Rm[WS(rs, 9)]; + T3 = T1 + T2; + T3g = T1 - T2; + T1x = Ip[0]; + T1y = Im[WS(rs, 9)]; + T1z = T1x - T1y; + T3C = T1x + T1y; + } + { + E T4, T5, T1A, T1B; + T4 = Rp[WS(rs, 5)]; + T5 = Rm[WS(rs, 4)]; + T6 = T4 + T5; + T3D = T4 - T5; + T1A = Ip[WS(rs, 5)]; + T1B = Im[WS(rs, 4)]; + T1C = T1A - T1B; + T3h = T1A + T1B; + } + T7 = T3 + T6; + T4i = T3g - T3h; + T4x = T3D + T3C; + TK = T3 - T6; + T1D = T1z - T1C; + T3i = T3g + T3h; + T3E = T3C - T3D; + T2D = T1z + T1C; + } + { + E Te, T4b, T4m, TL, T11, T33, T3l, T2s, TA, T4f, T4q, TP, T1n, T3d, T3v; + E T2w, Tl, T4c, T4n, TM, T18, T36, T3o, T2t, Tt, T4e, T4p, TO, T1g, T3a; + E T3s, T2v; + { + E Ta, T3j, TX, T31, Td, T32, T10, T3k; + { + E T8, T9, TV, TW; + T8 = Rp[WS(rs, 4)]; + T9 = Rm[WS(rs, 5)]; + Ta = T8 + T9; + T3j = T8 - T9; + TV = Ip[WS(rs, 4)]; + TW = Im[WS(rs, 5)]; + TX = TV - TW; + T31 = TV + TW; + } + { + E Tb, Tc, TY, TZ; + Tb = Rp[WS(rs, 9)]; + Tc = Rm[0]; + Td = Tb + Tc; + T32 = Tb - Tc; + TY = Ip[WS(rs, 9)]; + TZ = Im[0]; + T10 = TY - TZ; + T3k = TY + TZ; + } + Te = Ta + Td; + T4b = T3j - T3k; + T4m = T32 + T31; + TL = Ta - Td; + T11 = TX - T10; + T33 = T31 - T32; + T3l = T3j + T3k; + T2s = TX + T10; + } + { + E Tw, T3t, T1j, T3c, Tz, T3b, T1m, T3u; + { + E Tu, Tv, T1h, T1i; + Tu = Rm[WS(rs, 7)]; + Tv = Rp[WS(rs, 2)]; + Tw = Tu + Tv; + T3t = Tu - Tv; + T1h = Ip[WS(rs, 2)]; + T1i = Im[WS(rs, 7)]; + T1j = T1h - T1i; + T3c = T1h + T1i; + } + { + E Tx, Ty, T1k, T1l; + Tx = Rm[WS(rs, 2)]; + Ty = Rp[WS(rs, 7)]; + Tz = Tx + Ty; + T3b = Tx - Ty; + T1k = Ip[WS(rs, 7)]; + T1l = Im[WS(rs, 2)]; + T1m = T1k - T1l; + T3u = T1k + T1l; + } + TA = Tw + Tz; + T4f = T3t + T3u; + T4q = T3b - T3c; + TP = Tw - Tz; + T1n = T1j - T1m; + T3d = T3b + T3c; + T3v = T3t - T3u; + T2w = T1j + T1m; + } + { + E Th, T3m, T14, T35, Tk, T34, T17, T3n; + { + E Tf, Tg, T12, T13; + Tf = Rm[WS(rs, 3)]; + Tg = Rp[WS(rs, 6)]; + Th = Tf + Tg; + T3m = Tf - Tg; + T12 = Ip[WS(rs, 6)]; + T13 = Im[WS(rs, 3)]; + T14 = T12 - T13; + T35 = T12 + T13; + } + { + E Ti, Tj, T15, T16; + Ti = Rp[WS(rs, 1)]; + Tj = Rm[WS(rs, 8)]; + Tk = Ti + Tj; + T34 = Ti - Tj; + T15 = Ip[WS(rs, 1)]; + T16 = Im[WS(rs, 8)]; + T17 = T15 - T16; + T3n = T15 + T16; + } + Tl = Th + Tk; + T4c = T3m - T3n; + T4n = T34 - T35; + TM = Th - Tk; + T18 = T14 - T17; + T36 = T34 + T35; + T3o = T3m + T3n; + T2t = T14 + T17; + } + { + E Tp, T3q, T1c, T38, Ts, T39, T1f, T3r; + { + E Tn, To, T1a, T1b; + Tn = Rp[WS(rs, 8)]; + To = Rm[WS(rs, 1)]; + Tp = Tn + To; + T3q = Tn - To; + T1a = Ip[WS(rs, 8)]; + T1b = Im[WS(rs, 1)]; + T1c = T1a - T1b; + T38 = T1a + T1b; + } + { + E Tq, Tr, T1d, T1e; + Tq = Rm[WS(rs, 6)]; + Tr = Rp[WS(rs, 3)]; + Ts = Tq + Tr; + T39 = Tq - Tr; + T1d = Ip[WS(rs, 3)]; + T1e = Im[WS(rs, 6)]; + T1f = T1d - T1e; + T3r = T1d + T1e; + } + Tt = Tp + Ts; + T4e = T3q + T3r; + T4p = T39 + T38; + TO = Tp - Ts; + T1g = T1c - T1f; + T3a = T38 - T39; + T3s = T3q - T3r; + T2v = T1c + T1f; + } + T19 = T11 - T18; + T3L = T3l - T3o; + T3M = T3s - T3v; + T1o = T1g - T1n; + T2x = T2v - T2w; + T4C = T4e - T4f; + T4B = T4b - T4c; + T2u = T2s - T2t; + T1v = TO - TP; + T4r = T4p - T4q; + T4o = T4m - T4n; + T1u = TL - TM; + T2H = Te - Tl; + T37 = T33 + T36; + T2I = Tt - TA; + T3e = T3a + T3d; + T3p = T3l + T3o; + T3w = T3s + T3v; + T3x = T3p + T3w; + Tm = Te + Tl; + TB = Tt + TA; + TC = Tm + TB; + T4u = T4m + T4n; + T4v = T4p + T4q; + T4y = T4u + T4v; + T2A = T2s + T2t; + T2B = T2v + T2w; + T2E = T2A + T2B; + T1E = T11 + T18; + T1F = T1g + T1n; + T1G = T1E + T1F; + T4d = T4b + T4c; + T4g = T4e + T4f; + T4j = T4d + T4g; + T3F = T33 - T36; + T3G = T3a - T3d; + T3H = T3F + T3G; + TN = TL + TM; + TQ = TO + TP; + TR = TN + TQ; + } + Rp[0] = T7 + TC; + Rm[0] = T2D + T2E; + { + E T2k, T2o, T4T, T4U; + T2k = TK + TR; + T2o = T1D + T1G; + Rp[WS(rs, 5)] = FNMS(T2n, T2o, T2j * T2k); + Rm[WS(rs, 5)] = FMA(T2n, T2k, T2j * T2o); + T4T = T4i + T4j; + T4U = T4x + T4y; + Ip[WS(rs, 2)] = FNMS(T2c, T4U, T29 * T4T); + Im[WS(rs, 2)] = FMA(T29, T4U, T2c * T4T); + } + T48 = T3i + T3x; + T4a = T3E + T3H; + Ip[WS(rs, 7)] = FNMS(T49, T4a, T47 * T48); + Im[WS(rs, 7)] = FMA(T47, T4a, T49 * T48); + { + E T2y, T2J, T2V, T2R, T2G, T2U, T2r, T2Q; + T2y = FMA(KP951056516, T2u, KP587785252 * T2x); + T2J = FMA(KP951056516, T2H, KP587785252 * T2I); + T2V = FNMS(KP951056516, T2I, KP587785252 * T2H); + T2R = FNMS(KP951056516, T2x, KP587785252 * T2u); + { + E T2C, T2F, T2p, T2q; + T2C = KP559016994 * (T2A - T2B); + T2F = FNMS(KP250000000, T2E, T2D); + T2G = T2C + T2F; + T2U = T2F - T2C; + T2p = KP559016994 * (Tm - TB); + T2q = FNMS(KP250000000, TC, T7); + T2r = T2p + T2q; + T2Q = T2q - T2p; + } + { + E T2z, T2K, T2Y, T30; + T2z = T2r + T2y; + T2K = T2G - T2J; + Rp[WS(rs, 2)] = FNMS(T27, T2K, T25 * T2z); + Rm[WS(rs, 2)] = FMA(T27, T2z, T25 * T2K); + T2Y = T2Q - T2R; + T30 = T2V + T2U; + Rp[WS(rs, 6)] = FNMS(T2Z, T30, T2X * T2Y); + Rm[WS(rs, 6)] = FMA(T2Z, T2Y, T2X * T30); + } + { + E T2M, T2O, T2S, T2W; + T2M = T2r - T2y; + T2O = T2J + T2G; + Rp[WS(rs, 8)] = FNMS(T2N, T2O, T2L * T2M); + Rm[WS(rs, 8)] = FMA(T2N, T2M, T2L * T2O); + T2S = T2Q + T2R; + T2W = T2U - T2V; + Rp[WS(rs, 4)] = FNMS(T2T, T2W, T2P * T2S); + Rm[WS(rs, 4)] = FMA(T2T, T2S, T2P * T2W); + } + } + { + E T4s, T4D, T4N, T4I, T4A, T4M, T4l, T4J; + T4s = FMA(KP951056516, T4o, KP587785252 * T4r); + T4D = FMA(KP951056516, T4B, KP587785252 * T4C); + T4N = FNMS(KP951056516, T4C, KP587785252 * T4B); + T4I = FNMS(KP951056516, T4r, KP587785252 * T4o); + { + E T4w, T4z, T4h, T4k; + T4w = KP559016994 * (T4u - T4v); + T4z = FNMS(KP250000000, T4y, T4x); + T4A = T4w + T4z; + T4M = T4z - T4w; + T4h = KP559016994 * (T4d - T4g); + T4k = FNMS(KP250000000, T4j, T4i); + T4l = T4h + T4k; + T4J = T4k - T4h; + } + { + E T4t, T4E, T4Q, T4S; + T4t = T4l - T4s; + T4E = T4A + T4D; + Ip[0] = FNMS(TG, T4E, TD * T4t); + Im[0] = FMA(TD, T4E, TG * T4t); + T4Q = T4J - T4I; + T4S = T4M + T4N; + Ip[WS(rs, 8)] = FNMS(T4R, T4S, T4P * T4Q); + Im[WS(rs, 8)] = FMA(T4P, T4S, T4R * T4Q); + } + { + E T4F, T4G, T4K, T4O; + T4F = T4s + T4l; + T4G = T4A - T4D; + Ip[WS(rs, 4)] = FNMS(T1T, T4G, T1R * T4F); + Im[WS(rs, 4)] = FMA(T1R, T4G, T1T * T4F); + T4K = T4I + T4J; + T4O = T4M - T4N; + Ip[WS(rs, 6)] = FNMS(T4L, T4O, T4H * T4K); + Im[WS(rs, 6)] = FMA(T4H, T4O, T4L * T4K); + } + } + { + E T1p, T1w, T22, T1X, T1J, T23, TU, T1W; + T1p = FNMS(KP951056516, T1o, KP587785252 * T19); + T1w = FNMS(KP951056516, T1v, KP587785252 * T1u); + T22 = FMA(KP951056516, T1u, KP587785252 * T1v); + T1X = FMA(KP951056516, T19, KP587785252 * T1o); + { + E T1H, T1I, TS, TT; + T1H = FNMS(KP250000000, T1G, T1D); + T1I = KP559016994 * (T1E - T1F); + T1J = T1H - T1I; + T23 = T1I + T1H; + TS = FNMS(KP250000000, TR, TK); + TT = KP559016994 * (TN - TQ); + TU = TS - TT; + T1W = TT + TS; + } + { + E T1q, T1K, T2e, T2g; + T1q = TU - T1p; + T1K = T1w + T1J; + Rp[WS(rs, 1)] = FNMS(T1t, T1K, TJ * T1q); + Rm[WS(rs, 1)] = FMA(T1t, T1q, TJ * T1K); + T2e = T1W + T1X; + T2g = T23 - T22; + Rp[WS(rs, 7)] = FNMS(T2f, T2g, T2d * T2e); + Rm[WS(rs, 7)] = FMA(T2f, T2e, T2d * T2g); + } + { + E T1O, T1Q, T1Y, T24; + T1O = TU + T1p; + T1Q = T1J - T1w; + Rp[WS(rs, 9)] = FNMS(T1P, T1Q, T1N * T1O); + Rm[WS(rs, 9)] = FMA(T1P, T1O, T1N * T1Q); + T1Y = T1W - T1X; + T24 = T22 + T23; + Rp[WS(rs, 3)] = FNMS(T21, T24, T1V * T1Y); + Rm[WS(rs, 3)] = FMA(T21, T1Y, T1V * T24); + } + } + { + E T3f, T3N, T43, T3Z, T3K, T42, T3A, T3Y; + T3f = FNMS(KP951056516, T3e, KP587785252 * T37); + T3N = FNMS(KP951056516, T3M, KP587785252 * T3L); + T43 = FMA(KP951056516, T3L, KP587785252 * T3M); + T3Z = FMA(KP951056516, T37, KP587785252 * T3e); + { + E T3I, T3J, T3y, T3z; + T3I = FNMS(KP250000000, T3H, T3E); + T3J = KP559016994 * (T3F - T3G); + T3K = T3I - T3J; + T42 = T3J + T3I; + T3y = FNMS(KP250000000, T3x, T3i); + T3z = KP559016994 * (T3p - T3w); + T3A = T3y - T3z; + T3Y = T3z + T3y; + } + { + E T3B, T3O, T45, T46; + T3B = T3f + T3A; + T3O = T3K - T3N; + Ip[WS(rs, 1)] = FNMS(TH, T3O, TE * T3B); + Im[WS(rs, 1)] = FMA(TE, T3O, TH * T3B); + T45 = T3Z + T3Y; + T46 = T42 - T43; + Ip[WS(rs, 9)] = FNMS(T1M, T46, T1L * T45); + Im[WS(rs, 9)] = FMA(T1L, T46, T1M * T45); + } + { + E T3S, T3W, T40, T44; + T3S = T3A - T3f; + T3W = T3K + T3N; + Ip[WS(rs, 3)] = FNMS(T3V, T3W, T3R * T3S); + Im[WS(rs, 3)] = FMA(T3R, T3W, T3V * T3S); + T40 = T3Y - T3Z; + T44 = T42 + T43; + Ip[WS(rs, 5)] = FNMS(T41, T44, T3X * T40); + Im[WS(rs, 5)] = FMA(T3X, T44, T41 * T40); + } + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_CEXP, 1, 1}, + {TW_CEXP, 1, 3}, + {TW_CEXP, 1, 9}, + {TW_CEXP, 1, 19}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 20, "hc2cb2_20", twinstr, &GENUS, {204, 92, 72, 0} }; + +void X(codelet_hc2cb2_20) (planner *p) { + X(khc2c_register) (p, hc2cb2_20, &desc, HC2C_VIA_RDFT); +} +#endif /* HAVE_FMA */