Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/scalar/r2cb/hb_9.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/scalar/r2cb/hb_9.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,490 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:41:13 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -dif -name hb_9 -include hb.h */ + +/* + * This function contains 96 FP additions, 88 FP multiplications, + * (or, 24 additions, 16 multiplications, 72 fused multiply/add), + * 69 stack variables, 10 constants, and 36 memory accesses + */ +#include "hb.h" + +static void hb_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP954188894, +0.954188894138671133499268364187245676532219158); + DK(KP852868531, +0.852868531952443209628250963940074071936020296); + DK(KP492403876, +0.492403876506104029683371512294761506835321626); + DK(KP984807753, +0.984807753012208059366743024589523013670643252); + DK(KP777861913, +0.777861913430206160028177977318626690410586096); + DK(KP839099631, +0.839099631177280011763127298123181364687434283); + DK(KP363970234, +0.363970234266202361351047882776834043890471784); + DK(KP176326980, +0.176326980708464973471090386868618986121633062); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) { + E T1X, T1S, T1U, T1P, T1Y, T1T; + { + E T5, Tl, TQ, T1y, T1b, T1J, Tg, TE, TW, T13, T10, Tz, Tw, TT, T1K; + E T1B, T1L, T1E; + { + E T1, Th, T2, T3, Ti, Tj; + T1 = cr[0]; + Th = ci[WS(rs, 8)]; + T2 = cr[WS(rs, 3)]; + T3 = ci[WS(rs, 2)]; + Ti = ci[WS(rs, 5)]; + Tj = cr[WS(rs, 6)]; + { + E T12, Tb, TZ, TY, Ta, Tq, T11, Tr, Ts, TS, Te, Tt; + { + E T6, Tm, Tn, To, T9, Tc, Td, Tp; + { + E T7, T8, T1a, T4; + T6 = cr[WS(rs, 1)]; + T1a = T2 - T3; + T4 = T2 + T3; + { + E TP, Tk, TO, T19; + TP = Ti + Tj; + Tk = Ti - Tj; + T7 = cr[WS(rs, 4)]; + T5 = T1 + T4; + TO = FNMS(KP500000000, T4, T1); + Tl = Th + Tk; + T19 = FNMS(KP500000000, Tk, Th); + TQ = FNMS(KP866025403, TP, TO); + T1y = FMA(KP866025403, TP, TO); + T1b = FMA(KP866025403, T1a, T19); + T1J = FNMS(KP866025403, T1a, T19); + T8 = ci[WS(rs, 1)]; + } + Tm = ci[WS(rs, 7)]; + Tn = ci[WS(rs, 4)]; + To = cr[WS(rs, 7)]; + T9 = T7 + T8; + T12 = T7 - T8; + } + Tb = cr[WS(rs, 2)]; + TZ = Tn + To; + Tp = Tn - To; + TY = FNMS(KP500000000, T9, T6); + Ta = T6 + T9; + Tc = ci[WS(rs, 3)]; + Td = ci[0]; + Tq = Tm + Tp; + T11 = FMS(KP500000000, Tp, Tm); + Tr = ci[WS(rs, 6)]; + Ts = cr[WS(rs, 5)]; + TS = Td - Tc; + Te = Tc + Td; + Tt = cr[WS(rs, 8)]; + } + { + E T1C, Tv, TR, T1D, T1z, T1A; + { + E TU, Tu, TV, Tf; + TU = FNMS(KP500000000, Te, Tb); + Tf = Tb + Te; + Tu = Ts + Tt; + TV = Ts - Tt; + Tg = Ta + Tf; + TE = Ta - Tf; + TW = FMA(KP866025403, TV, TU); + T1C = FNMS(KP866025403, TV, TU); + Tv = Tr - Tu; + TR = FMA(KP500000000, Tu, Tr); + } + T1z = FMA(KP866025403, T12, T11); + T13 = FNMS(KP866025403, T12, T11); + T10 = FNMS(KP866025403, TZ, TY); + T1A = FMA(KP866025403, TZ, TY); + Tz = Tv - Tq; + Tw = Tq + Tv; + T1D = FMA(KP866025403, TS, TR); + TT = FNMS(KP866025403, TS, TR); + T1K = FNMS(KP176326980, T1z, T1A); + T1B = FMA(KP176326980, T1A, T1z); + T1L = FNMS(KP363970234, T1C, T1D); + T1E = FMA(KP363970234, T1D, T1C); + } + } + } + { + E T1d, T14, T1c, TX; + cr[0] = T5 + Tg; + T1d = FNMS(KP839099631, T10, T13); + T14 = FMA(KP839099631, T13, T10); + T1c = FMA(KP176326980, TT, TW); + TX = FNMS(KP176326980, TW, TT); + ci[0] = Tl + Tw; + { + E TL, TK, TJ, Ty, TD; + Ty = FNMS(KP500000000, Tg, T5); + TD = FNMS(KP500000000, Tw, Tl); + { + E Tx, TC, TA, TI, TF; + Tx = W[10]; + TC = W[11]; + TA = FNMS(KP866025403, Tz, Ty); + TI = FMA(KP866025403, Tz, Ty); + TF = FNMS(KP866025403, TE, TD); + TL = FMA(KP866025403, TE, TD); + { + E TH, TB, TG, TM; + TH = W[4]; + TB = Tx * TA; + TK = W[5]; + TG = Tx * TF; + TM = TH * TL; + TJ = TH * TI; + cr[WS(rs, 6)] = FNMS(TC, TF, TB); + ci[WS(rs, 6)] = FMA(TC, TA, TG); + ci[WS(rs, 3)] = FMA(TK, TI, TM); + } + } + cr[WS(rs, 3)] = FNMS(TK, TL, TJ); + { + E T1k, T1p, T1l, T1q, T1m; + { + E T1e, T1j, T15, T1o; + T1e = FNMS(KP777861913, T1d, T1c); + T1j = FMA(KP777861913, T1d, T1c); + T15 = FNMS(KP777861913, T14, TX); + T1o = FMA(KP777861913, T14, TX); + { + E TN, T16, T1f, T17, T1s, T1v, T18, T1i, T1n, T1r, T1u; + TN = W[0]; + T16 = FNMS(KP984807753, T15, TQ); + T1i = FMA(KP492403876, T15, TQ); + T1f = FMA(KP984807753, T1e, T1b); + T1n = FNMS(KP492403876, T1e, T1b); + T17 = TN * T16; + T1s = FMA(KP852868531, T1j, T1i); + T1k = FNMS(KP852868531, T1j, T1i); + T1v = FMA(KP852868531, T1o, T1n); + T1p = FNMS(KP852868531, T1o, T1n); + T18 = W[1]; + T1r = W[6]; + T1u = W[7]; + { + E T1h, T1g, T1w, T1t; + T1h = W[12]; + cr[WS(rs, 1)] = FNMS(T18, T1f, T17); + T1g = T18 * T16; + T1w = T1r * T1v; + T1t = T1r * T1s; + T1l = T1h * T1k; + ci[WS(rs, 1)] = FMA(TN, T1f, T1g); + ci[WS(rs, 4)] = FMA(T1u, T1s, T1w); + cr[WS(rs, 4)] = FNMS(T1u, T1v, T1t); + T1q = T1h * T1p; + } + T1m = W[13]; + } + } + { + E T1F, T1W, T1R, T1V, T1N, T1M, T1x, T1I; + T1F = FNMS(KP954188894, T1E, T1B); + T1W = FMA(KP954188894, T1E, T1B); + T1M = FNMS(KP954188894, T1L, T1K); + T1R = FMA(KP954188894, T1L, T1K); + ci[WS(rs, 7)] = FMA(T1m, T1k, T1q); + cr[WS(rs, 7)] = FNMS(T1m, T1p, T1l); + T1V = FNMS(KP492403876, T1M, T1J); + T1N = FMA(KP984807753, T1M, T1J); + T1x = W[2]; + T1I = W[3]; + { + E T23, T22, T20, T1Z, T24, T21; + T1X = FMA(KP852868531, T1W, T1V); + T23 = FNMS(KP852868531, T1W, T1V); + { + E T1G, T1Q, T1O, T1H; + T1G = FMA(KP984807753, T1F, T1y); + T1Q = FNMS(KP492403876, T1F, T1y); + T1O = T1x * T1N; + T22 = W[15]; + T1H = T1x * T1G; + T20 = FMA(KP852868531, T1R, T1Q); + T1S = FNMS(KP852868531, T1R, T1Q); + ci[WS(rs, 2)] = FMA(T1I, T1G, T1O); + cr[WS(rs, 2)] = FNMS(T1I, T1N, T1H); + T1Z = W[14]; + T24 = T22 * T20; + } + T1U = W[9]; + T21 = T1Z * T20; + ci[WS(rs, 8)] = FMA(T1Z, T23, T24); + T1P = W[8]; + T1Y = T1U * T1S; + cr[WS(rs, 8)] = FNMS(T22, T23, T21); + } + } + } + } + } + } + T1T = T1P * T1S; + ci[WS(rs, 5)] = FMA(T1P, T1X, T1Y); + cr[WS(rs, 5)] = FNMS(T1U, T1X, T1T); + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 9}, + {TW_NEXT, 1, 0} +}; + +static const hc2hc_desc desc = { 9, "hb_9", twinstr, &GENUS, {24, 16, 72, 0} }; + +void X(codelet_hb_9) (planner *p) { + X(khc2hc_register) (p, hb_9, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -dif -name hb_9 -include hb.h */ + +/* + * This function contains 96 FP additions, 72 FP multiplications, + * (or, 60 additions, 36 multiplications, 36 fused multiply/add), + * 53 stack variables, 8 constants, and 36 memory accesses + */ +#include "hb.h" + +static void hb_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP984807753, +0.984807753012208059366743024589523013670643252); + DK(KP173648177, +0.173648177666930348851716626769314796000375677); + DK(KP342020143, +0.342020143325668733044099614682259580763083368); + DK(KP939692620, +0.939692620785908384054109277324731469936208134); + DK(KP642787609, +0.642787609686539326322643409907263432907559884); + DK(KP766044443, +0.766044443118978035202392650555416673935832457); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) { + E T5, Tl, TM, T1o, T16, T1y, Ta, Tf, Tg, Tq, Tv, Tw, TT, T17, T1u; + E T1A, T1r, T1z, T10, T18; + { + E T1, Th, T4, T14, Tk, TL, TK, T15; + T1 = cr[0]; + Th = ci[WS(rs, 8)]; + { + E T2, T3, Ti, Tj; + T2 = cr[WS(rs, 3)]; + T3 = ci[WS(rs, 2)]; + T4 = T2 + T3; + T14 = KP866025403 * (T2 - T3); + Ti = ci[WS(rs, 5)]; + Tj = cr[WS(rs, 6)]; + Tk = Ti - Tj; + TL = KP866025403 * (Ti + Tj); + } + T5 = T1 + T4; + Tl = Th + Tk; + TK = FNMS(KP500000000, T4, T1); + TM = TK - TL; + T1o = TK + TL; + T15 = FNMS(KP500000000, Tk, Th); + T16 = T14 + T15; + T1y = T15 - T14; + } + { + E T6, T9, TN, TQ, Tm, Tp, TO, TR, Tb, Te, TU, TX, Tr, Tu, TV; + E TY; + { + E T7, T8, Tn, To; + T6 = cr[WS(rs, 1)]; + T7 = cr[WS(rs, 4)]; + T8 = ci[WS(rs, 1)]; + T9 = T7 + T8; + TN = FNMS(KP500000000, T9, T6); + TQ = KP866025403 * (T7 - T8); + Tm = ci[WS(rs, 7)]; + Tn = ci[WS(rs, 4)]; + To = cr[WS(rs, 7)]; + Tp = Tn - To; + TO = KP866025403 * (Tn + To); + TR = FNMS(KP500000000, Tp, Tm); + } + { + E Tc, Td, Ts, Tt; + Tb = cr[WS(rs, 2)]; + Tc = ci[WS(rs, 3)]; + Td = ci[0]; + Te = Tc + Td; + TU = FNMS(KP500000000, Te, Tb); + TX = KP866025403 * (Tc - Td); + Tr = ci[WS(rs, 6)]; + Ts = cr[WS(rs, 5)]; + Tt = cr[WS(rs, 8)]; + Tu = Ts + Tt; + TV = KP866025403 * (Ts - Tt); + TY = FMA(KP500000000, Tu, Tr); + } + { + E TP, TS, T1s, T1t; + Ta = T6 + T9; + Tf = Tb + Te; + Tg = Ta + Tf; + Tq = Tm + Tp; + Tv = Tr - Tu; + Tw = Tq + Tv; + TP = TN - TO; + TS = TQ + TR; + TT = FNMS(KP642787609, TS, KP766044443 * TP); + T17 = FMA(KP766044443, TS, KP642787609 * TP); + T1s = TU - TV; + T1t = TY - TX; + T1u = FMA(KP939692620, T1s, KP342020143 * T1t); + T1A = FNMS(KP939692620, T1t, KP342020143 * T1s); + { + E T1p, T1q, TW, TZ; + T1p = TN + TO; + T1q = TR - TQ; + T1r = FNMS(KP984807753, T1q, KP173648177 * T1p); + T1z = FMA(KP173648177, T1q, KP984807753 * T1p); + TW = TU + TV; + TZ = TX + TY; + T10 = FNMS(KP984807753, TZ, KP173648177 * TW); + T18 = FMA(KP984807753, TW, KP173648177 * TZ); + } + } + } + cr[0] = T5 + Tg; + ci[0] = Tl + Tw; + { + E TA, TG, TE, TI; + { + E Ty, Tz, TC, TD; + Ty = FNMS(KP500000000, Tg, T5); + Tz = KP866025403 * (Tv - Tq); + TA = Ty - Tz; + TG = Ty + Tz; + TC = FNMS(KP500000000, Tw, Tl); + TD = KP866025403 * (Ta - Tf); + TE = TC - TD; + TI = TD + TC; + } + { + E Tx, TB, TF, TH; + Tx = W[10]; + TB = W[11]; + cr[WS(rs, 6)] = FNMS(TB, TE, Tx * TA); + ci[WS(rs, 6)] = FMA(Tx, TE, TB * TA); + TF = W[4]; + TH = W[5]; + cr[WS(rs, 3)] = FNMS(TH, TI, TF * TG); + ci[WS(rs, 3)] = FMA(TF, TI, TH * TG); + } + } + { + E T1d, T1h, T12, T1c, T1a, T1g, T11, T19, TJ, T13; + T1d = KP866025403 * (T18 - T17); + T1h = KP866025403 * (TT - T10); + T11 = TT + T10; + T12 = TM + T11; + T1c = FNMS(KP500000000, T11, TM); + T19 = T17 + T18; + T1a = T16 + T19; + T1g = FNMS(KP500000000, T19, T16); + TJ = W[0]; + T13 = W[1]; + cr[WS(rs, 1)] = FNMS(T13, T1a, TJ * T12); + ci[WS(rs, 1)] = FMA(T13, T12, TJ * T1a); + { + E T1k, T1m, T1j, T1l; + T1k = T1c + T1d; + T1m = T1h + T1g; + T1j = W[6]; + T1l = W[7]; + cr[WS(rs, 4)] = FNMS(T1l, T1m, T1j * T1k); + ci[WS(rs, 4)] = FMA(T1j, T1m, T1l * T1k); + } + { + E T1e, T1i, T1b, T1f; + T1e = T1c - T1d; + T1i = T1g - T1h; + T1b = W[12]; + T1f = W[13]; + cr[WS(rs, 7)] = FNMS(T1f, T1i, T1b * T1e); + ci[WS(rs, 7)] = FMA(T1b, T1i, T1f * T1e); + } + } + { + E T1F, T1J, T1w, T1E, T1C, T1I, T1v, T1B, T1n, T1x; + T1F = KP866025403 * (T1A - T1z); + T1J = KP866025403 * (T1r + T1u); + T1v = T1r - T1u; + T1w = T1o + T1v; + T1E = FNMS(KP500000000, T1v, T1o); + T1B = T1z + T1A; + T1C = T1y + T1B; + T1I = FNMS(KP500000000, T1B, T1y); + T1n = W[2]; + T1x = W[3]; + cr[WS(rs, 2)] = FNMS(T1x, T1C, T1n * T1w); + ci[WS(rs, 2)] = FMA(T1n, T1C, T1x * T1w); + { + E T1M, T1O, T1L, T1N; + T1M = T1F + T1E; + T1O = T1I + T1J; + T1L = W[8]; + T1N = W[9]; + cr[WS(rs, 5)] = FNMS(T1N, T1O, T1L * T1M); + ci[WS(rs, 5)] = FMA(T1N, T1M, T1L * T1O); + } + { + E T1G, T1K, T1D, T1H; + T1G = T1E - T1F; + T1K = T1I - T1J; + T1D = W[14]; + T1H = W[15]; + cr[WS(rs, 8)] = FNMS(T1H, T1K, T1D * T1G); + ci[WS(rs, 8)] = FMA(T1H, T1G, T1D * T1K); + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 9}, + {TW_NEXT, 1, 0} +}; + +static const hc2hc_desc desc = { 9, "hb_9", twinstr, &GENUS, {60, 36, 36, 0} }; + +void X(codelet_hb_9) (planner *p) { + X(khc2hc_register) (p, hb_9, &desc); +} +#endif /* HAVE_FMA */