Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/scalar/r2cb/hb_20.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/scalar/r2cb/hb_20.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,1049 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:41:22 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hb_20 -include hb.h */ + +/* + * This function contains 246 FP additions, 148 FP multiplications, + * (or, 136 additions, 38 multiplications, 110 fused multiply/add), + * 101 stack variables, 4 constants, and 80 memory accesses + */ +#include "hb.h" + +static void hb_20(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP618033988, +0.618033988749894848204586834365638117720309180); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 38, MAKE_VOLATILE_STRIDE(40, rs)) { + E T1T, T1Q, T1P; + { + E T2W, T4e, T7, TE, T3z, T4z, T1t, T2l, T3a, T3G, T13, T33, T3H, T1i, T2g; + E T4H, T4G, T2d, T1B, T4u, T4B, T4A, T4r, T1A, T2s, T3l, T2t, T3s, T2o, T2q; + E T1w, T1y, TC, T29, T3E, T3C, T4n, T4l, TN, TL; + { + E T4, T2U, T3, T2V, T1s, T5, T1n, T1o; + { + E T1, T2, T1q, T1r; + T1 = cr[0]; + T2 = ci[WS(rs, 9)]; + T1q = ci[WS(rs, 14)]; + T1r = cr[WS(rs, 15)]; + T4 = cr[WS(rs, 5)]; + T2U = T1 - T2; + T3 = T1 + T2; + T2V = T1q + T1r; + T1s = T1q - T1r; + T5 = ci[WS(rs, 4)]; + T1n = ci[WS(rs, 19)]; + T1o = cr[WS(rs, 10)]; + } + { + E T3y, T6, T3x, T1p; + T2W = T2U + T2V; + T4e = T2U - T2V; + T3y = T4 - T5; + T6 = T4 + T5; + T3x = T1n + T1o; + T1p = T1n - T1o; + T7 = T3 + T6; + TE = T3 - T6; + T3z = T3x - T3y; + T4z = T3y + T3x; + T1t = T1p - T1s; + T2l = T1p + T1s; + } + } + { + E T2Z, T4f, Te, TF, T3o, T4p, T1a, T2b, TJ, TA, T4t, T3k, T4j, T39, T2f; + E T12, T32, T4g, Tl, TG, T3r, T4q, T1h, T2c, T36, T4i, Tt, TI, T3h, T4s; + E TV, T2e; + { + E Tb, T2X, Ta, T2Y, T19, Tc, T14, T15; + { + E T8, T9, T17, T18; + T8 = cr[WS(rs, 4)]; + T9 = ci[WS(rs, 5)]; + T17 = ci[WS(rs, 10)]; + T18 = cr[WS(rs, 19)]; + Tb = cr[WS(rs, 9)]; + T2X = T8 - T9; + Ta = T8 + T9; + T2Y = T17 + T18; + T19 = T17 - T18; + Tc = ci[0]; + T14 = ci[WS(rs, 15)]; + T15 = cr[WS(rs, 14)]; + } + { + E T3n, Td, T3m, T16; + T2Z = T2X + T2Y; + T4f = T2X - T2Y; + T3n = Tb - Tc; + Td = Tb + Tc; + T3m = T14 + T15; + T16 = T14 - T15; + Te = Ta + Td; + TF = Ta - Td; + T3o = T3m - T3n; + T4p = T3n + T3m; + T1a = T16 - T19; + T2b = T16 + T19; + } + } + { + E TW, T37, Tw, T3i, Tz, TX, TZ, T10; + { + E Tu, Tv, Tx, Ty; + Tu = ci[WS(rs, 7)]; + Tv = cr[WS(rs, 2)]; + Tx = ci[WS(rs, 2)]; + Ty = cr[WS(rs, 7)]; + TW = ci[WS(rs, 17)]; + T37 = Tu - Tv; + Tw = Tu + Tv; + T3i = Tx - Ty; + Tz = Tx + Ty; + TX = cr[WS(rs, 12)]; + TZ = ci[WS(rs, 12)]; + T10 = cr[WS(rs, 17)]; + } + { + E TY, T38, T11, T3j; + TJ = Tw - Tz; + TA = Tw + Tz; + T3j = TW + TX; + TY = TW - TX; + T38 = TZ + T10; + T11 = TZ - T10; + T4t = T3i - T3j; + T3k = T3i + T3j; + T4j = T37 + T38; + T39 = T37 - T38; + T2f = TY + T11; + T12 = TY - T11; + } + } + { + E Ti, T30, Th, T31, T1g, Tj, T1b, T1c; + { + E Tf, Tg, T1e, T1f; + Tf = ci[WS(rs, 3)]; + Tg = cr[WS(rs, 6)]; + T1e = ci[WS(rs, 18)]; + T1f = cr[WS(rs, 11)]; + Ti = cr[WS(rs, 1)]; + T30 = Tf - Tg; + Th = Tf + Tg; + T31 = T1e + T1f; + T1g = T1e - T1f; + Tj = ci[WS(rs, 8)]; + T1b = ci[WS(rs, 13)]; + T1c = cr[WS(rs, 16)]; + } + { + E T3p, Tk, T3q, T1d; + T32 = T30 + T31; + T4g = T30 - T31; + T3p = Ti - Tj; + Tk = Ti + Tj; + T3q = T1b + T1c; + T1d = T1b - T1c; + Tl = Th + Tk; + TG = Th - Tk; + T3r = T3p + T3q; + T4q = T3p - T3q; + T1h = T1d - T1g; + T2c = T1d + T1g; + } + } + { + E Tq, T34, Tp, T35, TU, Tr, TP, TQ; + { + E Tn, To, TS, TT; + Tn = cr[WS(rs, 8)]; + To = ci[WS(rs, 1)]; + TS = ci[WS(rs, 16)]; + TT = cr[WS(rs, 13)]; + Tq = ci[WS(rs, 6)]; + T34 = Tn - To; + Tp = Tn + To; + T35 = TS + TT; + TU = TS - TT; + Tr = cr[WS(rs, 3)]; + TP = ci[WS(rs, 11)]; + TQ = cr[WS(rs, 18)]; + } + { + E T3g, Ts, T3f, TR; + T36 = T34 - T35; + T4i = T34 + T35; + T3g = Tq - Tr; + Ts = Tq + Tr; + T3f = TP + TQ; + TR = TP - TQ; + Tt = Tp + Ts; + TI = Tp - Ts; + T3h = T3f - T3g; + T4s = T3g + T3f; + TV = TR - TU; + T2e = TR + TU; + } + } + { + E T1v, T1u, T2n, T4k, T4h, T2m, TH, TK; + T3a = T36 + T39; + T3G = T36 - T39; + T13 = TV - T12; + T1v = TV + T12; + T33 = T2Z + T32; + T3H = T2Z - T32; + T1i = T1a - T1h; + T1u = T1a + T1h; + T2n = T2e + T2f; + T2g = T2e - T2f; + T4H = T4i - T4j; + T4k = T4i + T4j; + T4h = T4f + T4g; + T4G = T4f - T4g; + T2d = T2b - T2c; + T2m = T2b + T2c; + TH = TF + TG; + T1B = TF - TG; + T4u = T4s - T4t; + T4B = T4s + T4t; + T4A = T4p + T4q; + T4r = T4p - T4q; + T1A = TI - TJ; + TK = TI + TJ; + { + E Tm, T3B, TB, T3A; + Tm = Te + Tl; + T2s = Te - Tl; + T3l = T3h + T3k; + T3B = T3h - T3k; + TB = Tt + TA; + T2t = Tt - TA; + T3s = T3o + T3r; + T3A = T3o - T3r; + T2o = T2m + T2n; + T2q = T2m - T2n; + T1w = T1u + T1v; + T1y = T1u - T1v; + TC = Tm + TB; + T29 = Tm - TB; + T3E = T3A - T3B; + T3C = T3A + T3B; + T4n = T4h - T4k; + T4l = T4h + T4k; + TN = TH - TK; + TL = TH + TK; + } + } + } + { + E T3d, T3b, T4E, T1x, TM, T4m, T58, T5b, T4D, T5a, T5c, T59, T4C; + cr[0] = T7 + TC; + T3d = T33 - T3a; + T3b = T33 + T3a; + T4E = T4A - T4B; + T4C = T4A + T4B; + ci[0] = T2l + T2o; + { + E T25, T22, T21, T24, T23, T26, T57; + T1x = FNMS(KP250000000, T1w, T1t); + T25 = T1t + T1w; + T22 = TE + TL; + TM = FNMS(KP250000000, TL, TE); + T21 = W[18]; + T24 = W[19]; + T4m = FNMS(KP250000000, T4l, T4e); + T58 = T4e + T4l; + T5b = T4z + T4C; + T4D = FNMS(KP250000000, T4C, T4z); + T23 = T21 * T22; + T26 = T24 * T22; + T57 = W[8]; + T5a = W[9]; + cr[WS(rs, 10)] = FNMS(T24, T25, T23); + ci[WS(rs, 10)] = FMA(T21, T25, T26); + T5c = T57 * T5b; + T59 = T57 * T58; + } + { + E T3U, T3Z, T3W, T40, T3V; + { + E T3c, T48, T4b, T3D, T47, T4a; + T3c = FNMS(KP250000000, T3b, T2W); + T48 = T2W + T3b; + T4b = T3z + T3C; + T3D = FNMS(KP250000000, T3C, T3z); + ci[WS(rs, 5)] = FMA(T5a, T58, T5c); + cr[WS(rs, 5)] = FNMS(T5a, T5b, T59); + T47 = W[28]; + T4a = W[29]; + { + E T3I, T3Y, T42, T3u, T3M, T3X, T3F; + { + E T3T, T3t, T4c, T49, T3e, T3S; + T3T = FMA(KP618033988, T3l, T3s); + T3t = FNMS(KP618033988, T3s, T3l); + T4c = T47 * T4b; + T49 = T47 * T48; + T3I = FNMS(KP618033988, T3H, T3G); + T3Y = FMA(KP618033988, T3G, T3H); + ci[WS(rs, 15)] = FMA(T4a, T48, T4c); + cr[WS(rs, 15)] = FNMS(T4a, T4b, T49); + T3e = FNMS(KP559016994, T3d, T3c); + T3S = FMA(KP559016994, T3d, T3c); + T42 = FMA(KP951056516, T3T, T3S); + T3U = FNMS(KP951056516, T3T, T3S); + T3u = FNMS(KP951056516, T3t, T3e); + T3M = FMA(KP951056516, T3t, T3e); + T3X = FMA(KP559016994, T3E, T3D); + T3F = FNMS(KP559016994, T3E, T3D); + } + { + E T3P, T45, T44, T46, T43; + { + E T3w, T3J, T3v, T3K, T2T, T41; + T2T = W[4]; + T3w = W[5]; + T3J = FMA(KP951056516, T3I, T3F); + T3P = FNMS(KP951056516, T3I, T3F); + T45 = FNMS(KP951056516, T3Y, T3X); + T3Z = FMA(KP951056516, T3Y, T3X); + T3v = T2T * T3u; + T3K = T2T * T3J; + T41 = W[36]; + T44 = W[37]; + cr[WS(rs, 3)] = FNMS(T3w, T3J, T3v); + ci[WS(rs, 3)] = FMA(T3w, T3u, T3K); + T46 = T41 * T45; + T43 = T41 * T42; + } + { + E T3O, T3Q, T3N, T3L, T3R; + T3L = W[12]; + T3O = W[13]; + ci[WS(rs, 19)] = FMA(T44, T42, T46); + cr[WS(rs, 19)] = FNMS(T44, T45, T43); + T3Q = T3L * T3P; + T3N = T3L * T3M; + T3R = W[20]; + T3W = W[21]; + ci[WS(rs, 7)] = FMA(T3O, T3M, T3Q); + cr[WS(rs, 7)] = FNMS(T3O, T3P, T3N); + T40 = T3R * T3Z; + T3V = T3R * T3U; + } + } + } + } + { + E T4U, T4Z, T4W, T50, T4V, T2L, T2I, T2H; + { + E T4T, T4v, T4I, T4Y, T4o, T4S; + T4T = FNMS(KP618033988, T4r, T4u); + T4v = FMA(KP618033988, T4u, T4r); + ci[WS(rs, 11)] = FMA(T3W, T3U, T40); + cr[WS(rs, 11)] = FNMS(T3W, T3Z, T3V); + T4I = FMA(KP618033988, T4H, T4G); + T4Y = FNMS(KP618033988, T4G, T4H); + T4o = FMA(KP559016994, T4n, T4m); + T4S = FNMS(KP559016994, T4n, T4m); + { + E T52, T4M, T55, T4P, T54, T56, T53; + { + E T4d, T4w, T4J, T4x, T4y, T4X, T4F, T51, T4K; + T4d = W[0]; + T4X = FNMS(KP559016994, T4E, T4D); + T4F = FMA(KP559016994, T4E, T4D); + T4U = FNMS(KP951056516, T4T, T4S); + T52 = FMA(KP951056516, T4T, T4S); + T4M = FMA(KP951056516, T4v, T4o); + T4w = FNMS(KP951056516, T4v, T4o); + T4Z = FMA(KP951056516, T4Y, T4X); + T55 = FNMS(KP951056516, T4Y, T4X); + T4P = FNMS(KP951056516, T4I, T4F); + T4J = FMA(KP951056516, T4I, T4F); + T4x = T4d * T4w; + T4y = W[1]; + T51 = W[32]; + T4K = T4d * T4J; + T54 = W[33]; + cr[WS(rs, 1)] = FNMS(T4y, T4J, T4x); + T56 = T51 * T55; + T53 = T51 * T52; + ci[WS(rs, 1)] = FMA(T4y, T4w, T4K); + } + { + E T4O, T4Q, T4N, T4L, T4R; + T4L = W[16]; + ci[WS(rs, 17)] = FMA(T54, T52, T56); + cr[WS(rs, 17)] = FNMS(T54, T55, T53); + T4O = W[17]; + T4Q = T4L * T4P; + T4N = T4L * T4M; + T4R = W[24]; + T4W = W[25]; + ci[WS(rs, 9)] = FMA(T4O, T4M, T4Q); + cr[WS(rs, 9)] = FNMS(T4O, T4P, T4N); + T50 = T4R * T4Z; + T4V = T4R * T4U; + } + } + } + { + E T2K, T2u, T2F, T2h, T28, T2J, T2r, T2p; + T2K = FNMS(KP618033988, T2s, T2t); + T2u = FMA(KP618033988, T2t, T2s); + ci[WS(rs, 13)] = FMA(T4W, T4U, T50); + cr[WS(rs, 13)] = FNMS(T4W, T4Z, T4V); + T2p = FNMS(KP250000000, T2o, T2l); + T2F = FNMS(KP618033988, T2d, T2g); + T2h = FMA(KP618033988, T2g, T2d); + T28 = FNMS(KP250000000, TC, T7); + T2J = FNMS(KP559016994, T2q, T2p); + T2r = FMA(KP559016994, T2q, T2p); + { + E T2B, T2G, T2y, T2R, T2Q, T2P, T2A, T2x; + { + E T2k, T2v, T27, T2O, T2i, T2a, T2E; + T2k = W[7]; + T2a = FMA(KP559016994, T29, T28); + T2E = FNMS(KP559016994, T29, T28); + T2B = FMA(KP951056516, T2u, T2r); + T2v = FNMS(KP951056516, T2u, T2r); + T27 = W[6]; + T2O = FMA(KP951056516, T2F, T2E); + T2G = FNMS(KP951056516, T2F, T2E); + T2i = FMA(KP951056516, T2h, T2a); + T2y = FNMS(KP951056516, T2h, T2a); + { + E T2N, T2j, T2w, T2S; + T2L = FMA(KP951056516, T2K, T2J); + T2R = FNMS(KP951056516, T2K, T2J); + T2Q = W[23]; + T2N = W[22]; + T2j = T27 * T2i; + T2w = T2k * T2i; + T2S = T2Q * T2O; + T2P = T2N * T2O; + cr[WS(rs, 4)] = FNMS(T2k, T2v, T2j); + ci[WS(rs, 4)] = FMA(T27, T2v, T2w); + ci[WS(rs, 12)] = FMA(T2N, T2R, T2S); + } + } + cr[WS(rs, 12)] = FNMS(T2Q, T2R, T2P); + T2A = W[31]; + T2x = W[30]; + { + E T2D, T2M, T2C, T2z; + T2I = W[15]; + T2C = T2A * T2y; + T2z = T2x * T2y; + T2D = W[14]; + T2M = T2I * T2G; + ci[WS(rs, 16)] = FMA(T2x, T2B, T2C); + cr[WS(rs, 16)] = FNMS(T2A, T2B, T2z); + T2H = T2D * T2G; + ci[WS(rs, 8)] = FMA(T2D, T2L, T2M); + } + } + } + { + E T1S, T1C, T1j, T1N, T1z, T1R; + T1S = FMA(KP618033988, T1A, T1B); + T1C = FNMS(KP618033988, T1B, T1A); + cr[WS(rs, 8)] = FNMS(T2I, T2L, T2H); + T1j = FNMS(KP618033988, T1i, T13); + T1N = FMA(KP618033988, T13, T1i); + T1z = FNMS(KP559016994, T1y, T1x); + T1R = FMA(KP559016994, T1y, T1x); + { + E T1J, T1O, T1G, T1Z, T1Y, T1X, T1I, T1F; + { + E T1m, T1D, TD, T1W, T1k, T1M, TO; + T1m = W[3]; + T1M = FMA(KP559016994, TN, TM); + TO = FNMS(KP559016994, TN, TM); + T1D = FNMS(KP951056516, T1C, T1z); + T1J = FMA(KP951056516, T1C, T1z); + TD = W[2]; + T1O = FNMS(KP951056516, T1N, T1M); + T1W = FMA(KP951056516, T1N, T1M); + T1G = FNMS(KP951056516, T1j, TO); + T1k = FMA(KP951056516, T1j, TO); + { + E T1V, T1l, T1E, T20; + T1Z = FNMS(KP951056516, T1S, T1R); + T1T = FMA(KP951056516, T1S, T1R); + T1Y = W[27]; + T1V = W[26]; + T1l = TD * T1k; + T1E = T1m * T1k; + T20 = T1Y * T1W; + T1X = T1V * T1W; + cr[WS(rs, 2)] = FNMS(T1m, T1D, T1l); + ci[WS(rs, 2)] = FMA(TD, T1D, T1E); + ci[WS(rs, 14)] = FMA(T1V, T1Z, T20); + } + } + cr[WS(rs, 14)] = FNMS(T1Y, T1Z, T1X); + T1I = W[35]; + T1F = W[34]; + { + E T1L, T1U, T1K, T1H; + T1Q = W[11]; + T1K = T1I * T1G; + T1H = T1F * T1G; + T1L = W[10]; + T1U = T1Q * T1O; + ci[WS(rs, 18)] = FMA(T1F, T1J, T1K); + cr[WS(rs, 18)] = FNMS(T1I, T1J, T1H); + T1P = T1L * T1O; + ci[WS(rs, 6)] = FMA(T1L, T1T, T1U); + } + } + } + } + } + } + } + cr[WS(rs, 6)] = FNMS(T1Q, T1T, T1P); + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 20}, + {TW_NEXT, 1, 0} +}; + +static const hc2hc_desc desc = { 20, "hb_20", twinstr, &GENUS, {136, 38, 110, 0} }; + +void X(codelet_hb_20) (planner *p) { + X(khc2hc_register) (p, hb_20, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hb_20 -include hb.h */ + +/* + * This function contains 246 FP additions, 124 FP multiplications, + * (or, 184 additions, 62 multiplications, 62 fused multiply/add), + * 97 stack variables, 4 constants, and 80 memory accesses + */ +#include "hb.h" + +static void hb_20(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP587785252, +0.587785252292473129168705954639072768597652438); + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 38, MAKE_VOLATILE_STRIDE(40, rs)) { + E T7, T3T, T49, TE, T1v, T2T, T3g, T2d, T13, T3n, T3o, T1i, T26, T4e, T4d; + E T23, T1n, T42, T3Z, T1m, T2h, T2I, T2i, T2P, T30, T37, T38, Tm, TB, TC; + E T46, T47, T4a, T2a, T2b, T2e, T1w, T1x, T1y, T3O, T3R, T3U, T3h, T3i, T3j; + E TH, TK, TL; + { + E T3, T2R, T1u, T2S, T6, T3f, T1r, T3e; + { + E T1, T2, T1s, T1t; + T1 = cr[0]; + T2 = ci[WS(rs, 9)]; + T3 = T1 + T2; + T2R = T1 - T2; + T1s = ci[WS(rs, 14)]; + T1t = cr[WS(rs, 15)]; + T1u = T1s - T1t; + T2S = T1s + T1t; + } + { + E T4, T5, T1p, T1q; + T4 = cr[WS(rs, 5)]; + T5 = ci[WS(rs, 4)]; + T6 = T4 + T5; + T3f = T4 - T5; + T1p = ci[WS(rs, 19)]; + T1q = cr[WS(rs, 10)]; + T1r = T1p - T1q; + T3e = T1p + T1q; + } + T7 = T3 + T6; + T3T = T2R - T2S; + T49 = T3f + T3e; + TE = T3 - T6; + T1v = T1r - T1u; + T2T = T2R + T2S; + T3g = T3e - T3f; + T2d = T1r + T1u; + } + { + E Te, T3M, T3X, TF, TV, T2E, T2W, T21, TA, T3Q, T41, TJ, T1h, T2O, T36; + E T25, Tl, T3N, T3Y, TG, T12, T2H, T2Z, T22, Tt, T3P, T40, TI, T1a, T2L; + E T33, T24; + { + E Ta, T2U, TU, T2V, Td, T2D, TR, T2C; + { + E T8, T9, TS, TT; + T8 = cr[WS(rs, 4)]; + T9 = ci[WS(rs, 5)]; + Ta = T8 + T9; + T2U = T8 - T9; + TS = ci[WS(rs, 10)]; + TT = cr[WS(rs, 19)]; + TU = TS - TT; + T2V = TS + TT; + } + { + E Tb, Tc, TP, TQ; + Tb = cr[WS(rs, 9)]; + Tc = ci[0]; + Td = Tb + Tc; + T2D = Tb - Tc; + TP = ci[WS(rs, 15)]; + TQ = cr[WS(rs, 14)]; + TR = TP - TQ; + T2C = TP + TQ; + } + Te = Ta + Td; + T3M = T2U - T2V; + T3X = T2D + T2C; + TF = Ta - Td; + TV = TR - TU; + T2E = T2C - T2D; + T2W = T2U + T2V; + T21 = TR + TU; + } + { + E Tw, T34, Tz, T2M, T1d, T2N, T1g, T35; + { + E Tu, Tv, Tx, Ty; + Tu = ci[WS(rs, 7)]; + Tv = cr[WS(rs, 2)]; + Tw = Tu + Tv; + T34 = Tu - Tv; + Tx = ci[WS(rs, 2)]; + Ty = cr[WS(rs, 7)]; + Tz = Tx + Ty; + T2M = Tx - Ty; + } + { + E T1b, T1c, T1e, T1f; + T1b = ci[WS(rs, 17)]; + T1c = cr[WS(rs, 12)]; + T1d = T1b - T1c; + T2N = T1b + T1c; + T1e = ci[WS(rs, 12)]; + T1f = cr[WS(rs, 17)]; + T1g = T1e - T1f; + T35 = T1e + T1f; + } + TA = Tw + Tz; + T3Q = T34 + T35; + T41 = T2M - T2N; + TJ = Tw - Tz; + T1h = T1d - T1g; + T2O = T2M + T2N; + T36 = T34 - T35; + T25 = T1d + T1g; + } + { + E Th, T2X, T11, T2Y, Tk, T2F, TY, T2G; + { + E Tf, Tg, TZ, T10; + Tf = ci[WS(rs, 3)]; + Tg = cr[WS(rs, 6)]; + Th = Tf + Tg; + T2X = Tf - Tg; + TZ = ci[WS(rs, 18)]; + T10 = cr[WS(rs, 11)]; + T11 = TZ - T10; + T2Y = TZ + T10; + } + { + E Ti, Tj, TW, TX; + Ti = cr[WS(rs, 1)]; + Tj = ci[WS(rs, 8)]; + Tk = Ti + Tj; + T2F = Ti - Tj; + TW = ci[WS(rs, 13)]; + TX = cr[WS(rs, 16)]; + TY = TW - TX; + T2G = TW + TX; + } + Tl = Th + Tk; + T3N = T2X - T2Y; + T3Y = T2F - T2G; + TG = Th - Tk; + T12 = TY - T11; + T2H = T2F + T2G; + T2Z = T2X + T2Y; + T22 = TY + T11; + } + { + E Tp, T31, T19, T32, Ts, T2K, T16, T2J; + { + E Tn, To, T17, T18; + Tn = cr[WS(rs, 8)]; + To = ci[WS(rs, 1)]; + Tp = Tn + To; + T31 = Tn - To; + T17 = ci[WS(rs, 16)]; + T18 = cr[WS(rs, 13)]; + T19 = T17 - T18; + T32 = T17 + T18; + } + { + E Tq, Tr, T14, T15; + Tq = ci[WS(rs, 6)]; + Tr = cr[WS(rs, 3)]; + Ts = Tq + Tr; + T2K = Tq - Tr; + T14 = ci[WS(rs, 11)]; + T15 = cr[WS(rs, 18)]; + T16 = T14 - T15; + T2J = T14 + T15; + } + Tt = Tp + Ts; + T3P = T31 + T32; + T40 = T2K + T2J; + TI = Tp - Ts; + T1a = T16 - T19; + T2L = T2J - T2K; + T33 = T31 - T32; + T24 = T16 + T19; + } + T13 = TV - T12; + T3n = T2W - T2Z; + T3o = T33 - T36; + T1i = T1a - T1h; + T26 = T24 - T25; + T4e = T3P - T3Q; + T4d = T3M - T3N; + T23 = T21 - T22; + T1n = TI - TJ; + T42 = T40 - T41; + T3Z = T3X - T3Y; + T1m = TF - TG; + T2h = Te - Tl; + T2I = T2E + T2H; + T2i = Tt - TA; + T2P = T2L + T2O; + T30 = T2W + T2Z; + T37 = T33 + T36; + T38 = T30 + T37; + Tm = Te + Tl; + TB = Tt + TA; + TC = Tm + TB; + T46 = T3X + T3Y; + T47 = T40 + T41; + T4a = T46 + T47; + T2a = T21 + T22; + T2b = T24 + T25; + T2e = T2a + T2b; + T1w = TV + T12; + T1x = T1a + T1h; + T1y = T1w + T1x; + T3O = T3M + T3N; + T3R = T3P + T3Q; + T3U = T3O + T3R; + T3h = T2E - T2H; + T3i = T2L - T2O; + T3j = T3h + T3i; + TH = TF + TG; + TK = TI + TJ; + TL = TH + TK; + } + cr[0] = T7 + TC; + ci[0] = T2d + T2e; + { + E T1U, T1W, T1T, T1V; + T1U = TE + TL; + T1W = T1v + T1y; + T1T = W[18]; + T1V = W[19]; + cr[WS(rs, 10)] = FNMS(T1V, T1W, T1T * T1U); + ci[WS(rs, 10)] = FMA(T1V, T1U, T1T * T1W); + } + { + E T4y, T4A, T4x, T4z; + T4y = T3T + T3U; + T4A = T49 + T4a; + T4x = W[8]; + T4z = W[9]; + cr[WS(rs, 5)] = FNMS(T4z, T4A, T4x * T4y); + ci[WS(rs, 5)] = FMA(T4x, T4A, T4z * T4y); + } + { + E T3I, T3K, T3H, T3J; + T3I = T2T + T38; + T3K = T3g + T3j; + T3H = W[28]; + T3J = W[29]; + cr[WS(rs, 15)] = FNMS(T3J, T3K, T3H * T3I); + ci[WS(rs, 15)] = FMA(T3H, T3K, T3J * T3I); + } + { + E T27, T2j, T2v, T2r, T2g, T2u, T20, T2q; + T27 = FMA(KP951056516, T23, KP587785252 * T26); + T2j = FMA(KP951056516, T2h, KP587785252 * T2i); + T2v = FNMS(KP951056516, T2i, KP587785252 * T2h); + T2r = FNMS(KP951056516, T26, KP587785252 * T23); + { + E T2c, T2f, T1Y, T1Z; + T2c = KP559016994 * (T2a - T2b); + T2f = FNMS(KP250000000, T2e, T2d); + T2g = T2c + T2f; + T2u = T2f - T2c; + T1Y = KP559016994 * (Tm - TB); + T1Z = FNMS(KP250000000, TC, T7); + T20 = T1Y + T1Z; + T2q = T1Z - T1Y; + } + { + E T28, T2k, T1X, T29; + T28 = T20 + T27; + T2k = T2g - T2j; + T1X = W[6]; + T29 = W[7]; + cr[WS(rs, 4)] = FNMS(T29, T2k, T1X * T28); + ci[WS(rs, 4)] = FMA(T29, T28, T1X * T2k); + } + { + E T2y, T2A, T2x, T2z; + T2y = T2q - T2r; + T2A = T2v + T2u; + T2x = W[22]; + T2z = W[23]; + cr[WS(rs, 12)] = FNMS(T2z, T2A, T2x * T2y); + ci[WS(rs, 12)] = FMA(T2z, T2y, T2x * T2A); + } + { + E T2m, T2o, T2l, T2n; + T2m = T20 - T27; + T2o = T2j + T2g; + T2l = W[30]; + T2n = W[31]; + cr[WS(rs, 16)] = FNMS(T2n, T2o, T2l * T2m); + ci[WS(rs, 16)] = FMA(T2n, T2m, T2l * T2o); + } + { + E T2s, T2w, T2p, T2t; + T2s = T2q + T2r; + T2w = T2u - T2v; + T2p = W[14]; + T2t = W[15]; + cr[WS(rs, 8)] = FNMS(T2t, T2w, T2p * T2s); + ci[WS(rs, 8)] = FMA(T2t, T2s, T2p * T2w); + } + } + { + E T43, T4f, T4r, T4m, T4c, T4q, T3W, T4n; + T43 = FMA(KP951056516, T3Z, KP587785252 * T42); + T4f = FMA(KP951056516, T4d, KP587785252 * T4e); + T4r = FNMS(KP951056516, T4e, KP587785252 * T4d); + T4m = FNMS(KP951056516, T42, KP587785252 * T3Z); + { + E T48, T4b, T3S, T3V; + T48 = KP559016994 * (T46 - T47); + T4b = FNMS(KP250000000, T4a, T49); + T4c = T48 + T4b; + T4q = T4b - T48; + T3S = KP559016994 * (T3O - T3R); + T3V = FNMS(KP250000000, T3U, T3T); + T3W = T3S + T3V; + T4n = T3V - T3S; + } + { + E T44, T4g, T3L, T45; + T44 = T3W - T43; + T4g = T4c + T4f; + T3L = W[0]; + T45 = W[1]; + cr[WS(rs, 1)] = FNMS(T45, T4g, T3L * T44); + ci[WS(rs, 1)] = FMA(T3L, T4g, T45 * T44); + } + { + E T4u, T4w, T4t, T4v; + T4u = T4n - T4m; + T4w = T4q + T4r; + T4t = W[32]; + T4v = W[33]; + cr[WS(rs, 17)] = FNMS(T4v, T4w, T4t * T4u); + ci[WS(rs, 17)] = FMA(T4t, T4w, T4v * T4u); + } + { + E T4i, T4k, T4h, T4j; + T4i = T43 + T3W; + T4k = T4c - T4f; + T4h = W[16]; + T4j = W[17]; + cr[WS(rs, 9)] = FNMS(T4j, T4k, T4h * T4i); + ci[WS(rs, 9)] = FMA(T4h, T4k, T4j * T4i); + } + { + E T4o, T4s, T4l, T4p; + T4o = T4m + T4n; + T4s = T4q - T4r; + T4l = W[24]; + T4p = W[25]; + cr[WS(rs, 13)] = FNMS(T4p, T4s, T4l * T4o); + ci[WS(rs, 13)] = FMA(T4l, T4s, T4p * T4o); + } + } + { + E T1j, T1o, T1M, T1J, T1B, T1N, TO, T1I; + T1j = FNMS(KP951056516, T1i, KP587785252 * T13); + T1o = FNMS(KP951056516, T1n, KP587785252 * T1m); + T1M = FMA(KP951056516, T1m, KP587785252 * T1n); + T1J = FMA(KP951056516, T13, KP587785252 * T1i); + { + E T1z, T1A, TM, TN; + T1z = FNMS(KP250000000, T1y, T1v); + T1A = KP559016994 * (T1w - T1x); + T1B = T1z - T1A; + T1N = T1A + T1z; + TM = FNMS(KP250000000, TL, TE); + TN = KP559016994 * (TH - TK); + TO = TM - TN; + T1I = TN + TM; + } + { + E T1k, T1C, TD, T1l; + T1k = TO - T1j; + T1C = T1o + T1B; + TD = W[2]; + T1l = W[3]; + cr[WS(rs, 2)] = FNMS(T1l, T1C, TD * T1k); + ci[WS(rs, 2)] = FMA(T1l, T1k, TD * T1C); + } + { + E T1Q, T1S, T1P, T1R; + T1Q = T1I + T1J; + T1S = T1N - T1M; + T1P = W[26]; + T1R = W[27]; + cr[WS(rs, 14)] = FNMS(T1R, T1S, T1P * T1Q); + ci[WS(rs, 14)] = FMA(T1R, T1Q, T1P * T1S); + } + { + E T1E, T1G, T1D, T1F; + T1E = TO + T1j; + T1G = T1B - T1o; + T1D = W[34]; + T1F = W[35]; + cr[WS(rs, 18)] = FNMS(T1F, T1G, T1D * T1E); + ci[WS(rs, 18)] = FMA(T1F, T1E, T1D * T1G); + } + { + E T1K, T1O, T1H, T1L; + T1K = T1I - T1J; + T1O = T1M + T1N; + T1H = W[10]; + T1L = W[11]; + cr[WS(rs, 6)] = FNMS(T1L, T1O, T1H * T1K); + ci[WS(rs, 6)] = FMA(T1L, T1K, T1H * T1O); + } + } + { + E T2Q, T3p, T3B, T3x, T3m, T3A, T3b, T3w; + T2Q = FNMS(KP951056516, T2P, KP587785252 * T2I); + T3p = FNMS(KP951056516, T3o, KP587785252 * T3n); + T3B = FMA(KP951056516, T3n, KP587785252 * T3o); + T3x = FMA(KP951056516, T2I, KP587785252 * T2P); + { + E T3k, T3l, T39, T3a; + T3k = FNMS(KP250000000, T3j, T3g); + T3l = KP559016994 * (T3h - T3i); + T3m = T3k - T3l; + T3A = T3l + T3k; + T39 = FNMS(KP250000000, T38, T2T); + T3a = KP559016994 * (T30 - T37); + T3b = T39 - T3a; + T3w = T3a + T39; + } + { + E T3c, T3q, T2B, T3d; + T3c = T2Q + T3b; + T3q = T3m - T3p; + T2B = W[4]; + T3d = W[5]; + cr[WS(rs, 3)] = FNMS(T3d, T3q, T2B * T3c); + ci[WS(rs, 3)] = FMA(T2B, T3q, T3d * T3c); + } + { + E T3E, T3G, T3D, T3F; + T3E = T3x + T3w; + T3G = T3A - T3B; + T3D = W[36]; + T3F = W[37]; + cr[WS(rs, 19)] = FNMS(T3F, T3G, T3D * T3E); + ci[WS(rs, 19)] = FMA(T3D, T3G, T3F * T3E); + } + { + E T3s, T3u, T3r, T3t; + T3s = T3b - T2Q; + T3u = T3m + T3p; + T3r = W[12]; + T3t = W[13]; + cr[WS(rs, 7)] = FNMS(T3t, T3u, T3r * T3s); + ci[WS(rs, 7)] = FMA(T3r, T3u, T3t * T3s); + } + { + E T3y, T3C, T3v, T3z; + T3y = T3w - T3x; + T3C = T3A + T3B; + T3v = W[20]; + T3z = W[21]; + cr[WS(rs, 11)] = FNMS(T3z, T3C, T3v * T3y); + ci[WS(rs, 11)] = FMA(T3v, T3C, T3z * T3y); + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 20}, + {TW_NEXT, 1, 0} +}; + +static const hc2hc_desc desc = { 20, "hb_20", twinstr, &GENUS, {184, 62, 62, 0} }; + +void X(codelet_hb_20) (planner *p) { + X(khc2hc_register) (p, hb_20, &desc); +} +#endif /* HAVE_FMA */