Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/scalar/r2cb/hb_16.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/scalar/r2cb/hb_16.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,809 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:41:14 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hb_16 -include hb.h */ + +/* + * This function contains 174 FP additions, 100 FP multiplications, + * (or, 104 additions, 30 multiplications, 70 fused multiply/add), + * 78 stack variables, 3 constants, and 64 memory accesses + */ +#include "hb.h" + +static void hb_16(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + DK(KP414213562, +0.414213562373095048801688724209698078569671875); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 30, MAKE_VOLATILE_STRIDE(32, rs)) { + E T1I, T1L, T1K, T1M, T1J; + { + E T1O, TA, T1h, T21, T3b, T2T, T3D, T3r, T1k, T1P, T3y, Tf, T36, T2A, T22; + E TL, T3z, T3u, T2U, T2F, T2K, T2V, T12, Tu, T3E, TX, T1n, T17, T1T, T24; + E T1W, T25; + { + E T2z, TF, TK, T2w; + { + E Tw, T3, T2x, TJ, T2Q, T1g, T1d, T6, TC, TB, Ta, T2R, Tz, TD, Tb; + E Tc; + { + E T1e, T1f, T4, T5; + { + E T1, T2, TH, TI; + T1 = cr[0]; + T2 = ci[WS(rs, 7)]; + TH = ci[WS(rs, 9)]; + TI = cr[WS(rs, 14)]; + T1e = ci[WS(rs, 15)]; + Tw = T1 - T2; + T3 = T1 + T2; + T2x = TH - TI; + TJ = TH + TI; + T1f = cr[WS(rs, 8)]; + T4 = cr[WS(rs, 4)]; + T5 = ci[WS(rs, 3)]; + } + { + E T8, T9, Tx, Ty; + T8 = cr[WS(rs, 2)]; + T2Q = T1e - T1f; + T1g = T1e + T1f; + T1d = T4 - T5; + T6 = T4 + T5; + T9 = ci[WS(rs, 5)]; + Tx = ci[WS(rs, 11)]; + Ty = cr[WS(rs, 12)]; + TC = ci[WS(rs, 13)]; + TB = T8 - T9; + Ta = T8 + T9; + T2R = Tx - Ty; + Tz = Tx + Ty; + TD = cr[WS(rs, 10)]; + Tb = ci[WS(rs, 1)]; + Tc = cr[WS(rs, 6)]; + } + } + { + E T2y, TE, TG, Te, T2P, T2S, T3p, Td; + T1O = Tw + Tz; + TA = Tw - Tz; + T2y = TC - TD; + TE = TC + TD; + TG = Tb - Tc; + Td = Tb + Tc; + T1h = T1d + T1g; + T21 = T1g - T1d; + Te = Ta + Td; + T2P = Ta - Td; + T2S = T2Q - T2R; + T3p = T2Q + T2R; + { + E T1i, T1j, T3q, T7; + T3q = T2y + T2x; + T2z = T2x - T2y; + TF = TB - TE; + T1i = TB + TE; + T3b = T2S - T2P; + T2T = T2P + T2S; + TK = TG - TJ; + T1j = TG + TJ; + T3D = T3p - T3q; + T3r = T3p + T3q; + T2w = T3 - T6; + T7 = T3 + T6; + T1k = T1i - T1j; + T1P = T1i + T1j; + T3y = T7 - Te; + Tf = T7 + Te; + } + } + } + { + E T13, Ti, T2C, T11, T2D, T16, TY, Tl, TT, TS, Tp, T2H, TQ, TU, Tq; + E Tr; + { + E T14, T15, Tj, Tk; + { + E Tg, Th, TZ, T10; + Tg = cr[WS(rs, 1)]; + T36 = T2w - T2z; + T2A = T2w + T2z; + T22 = TF - TK; + TL = TF + TK; + Th = ci[WS(rs, 6)]; + TZ = ci[WS(rs, 14)]; + T10 = cr[WS(rs, 9)]; + T14 = ci[WS(rs, 10)]; + T13 = Tg - Th; + Ti = Tg + Th; + T2C = TZ - T10; + T11 = TZ + T10; + T15 = cr[WS(rs, 13)]; + Tj = cr[WS(rs, 5)]; + Tk = ci[WS(rs, 2)]; + } + { + E Tn, To, TO, TP; + Tn = ci[0]; + T2D = T14 - T15; + T16 = T14 + T15; + TY = Tj - Tk; + Tl = Tj + Tk; + To = cr[WS(rs, 7)]; + TO = ci[WS(rs, 8)]; + TP = cr[WS(rs, 15)]; + TT = ci[WS(rs, 12)]; + TS = Tn - To; + Tp = Tn + To; + T2H = TO - TP; + TQ = TO + TP; + TU = cr[WS(rs, 11)]; + Tq = cr[WS(rs, 3)]; + Tr = ci[WS(rs, 4)]; + } + } + { + E TV, TN, Tm, Tt; + { + E T2E, T3s, Ts, T3t, T2J, T2B, T2I, T2G; + T2E = T2C - T2D; + T3s = T2C + T2D; + T2I = TT - TU; + TV = TT + TU; + TN = Tq - Tr; + Ts = Tq + Tr; + T3t = T2H + T2I; + T2J = T2H - T2I; + Tm = Ti + Tl; + T2B = Ti - Tl; + Tt = Tp + Ts; + T2G = Tp - Ts; + T3z = T3t - T3s; + T3u = T3s + T3t; + T2U = T2B + T2E; + T2F = T2B - T2E; + T2K = T2G + T2J; + T2V = T2J - T2G; + } + { + E T1U, T1V, T1R, T1S, TR, TW; + TR = TN - TQ; + T1U = TN + TQ; + T1V = TS + TV; + TW = TS - TV; + T1R = T11 - TY; + T12 = TY + T11; + Tu = Tm + Tt; + T3E = Tm - Tt; + TX = FNMS(KP414213562, TW, TR); + T1n = FMA(KP414213562, TR, TW); + T17 = T13 - T16; + T1S = T13 + T16; + T1T = FNMS(KP414213562, T1S, T1R); + T24 = FMA(KP414213562, T1R, T1S); + T1W = FNMS(KP414213562, T1V, T1U); + T25 = FMA(KP414213562, T1U, T1V); + } + } + } + } + { + E T18, T1m, T2W, T2L, T3j, T3i, T3h; + { + E T3m, T3v, T3l, T3o; + cr[0] = Tf + Tu; + T18 = FMA(KP414213562, T17, T12); + T1m = FNMS(KP414213562, T12, T17); + T3m = Tf - Tu; + T3v = T3r - T3u; + T3l = W[14]; + T3o = W[15]; + ci[0] = T3r + T3u; + { + E T3A, T3I, T3L, T3F, T3C, T3G, T3B, T3x, T3n, T3w, T3H, T3K; + T3A = T3y - T3z; + T3I = T3y + T3z; + T3n = T3l * T3m; + T3w = T3o * T3m; + T3L = T3E + T3D; + T3F = T3D - T3E; + T3x = W[22]; + cr[WS(rs, 8)] = FNMS(T3o, T3v, T3n); + ci[WS(rs, 8)] = FMA(T3l, T3v, T3w); + T3C = W[23]; + T3G = T3x * T3F; + T3B = T3x * T3A; + ci[WS(rs, 12)] = FMA(T3C, T3A, T3G); + cr[WS(rs, 12)] = FNMS(T3C, T3F, T3B); + T3H = W[6]; + T3K = W[7]; + { + E T3g, T38, T3d, T35, T3a; + { + E T37, T3c, T3M, T3J; + T37 = T2V - T2U; + T2W = T2U + T2V; + T2L = T2F + T2K; + T3c = T2F - T2K; + T3M = T3H * T3L; + T3J = T3H * T3I; + T3g = FMA(KP707106781, T37, T36); + T38 = FNMS(KP707106781, T37, T36); + ci[WS(rs, 4)] = FMA(T3K, T3I, T3M); + cr[WS(rs, 4)] = FNMS(T3K, T3L, T3J); + T3d = FNMS(KP707106781, T3c, T3b); + T3j = FMA(KP707106781, T3c, T3b); + } + T35 = W[26]; + T3a = W[27]; + { + E T3f, T3e, T39, T3k; + T3f = W[10]; + T3i = W[11]; + T3e = T35 * T3d; + T39 = T35 * T38; + T3k = T3f * T3j; + T3h = T3f * T3g; + ci[WS(rs, 14)] = FMA(T3a, T38, T3e); + cr[WS(rs, 14)] = FNMS(T3a, T3d, T39); + ci[WS(rs, 6)] = FMA(T3i, T3g, T3k); + } + } + } + } + cr[WS(rs, 6)] = FNMS(T3i, T3j, T3h); + { + E T2g, T2m, T2l, T2h, T2d, T29, T2c, T2b, T2e; + { + E T33, T2Z, T32, T31, T34; + { + E T2v, T30, T2M, T2X, T2O, T2N, T2Y; + T2v = W[18]; + T30 = FMA(KP707106781, T2L, T2A); + T2M = FNMS(KP707106781, T2L, T2A); + T33 = FMA(KP707106781, T2W, T2T); + T2X = FNMS(KP707106781, T2W, T2T); + T2O = W[19]; + T2N = T2v * T2M; + T2Z = W[2]; + T32 = W[3]; + T2Y = T2O * T2M; + cr[WS(rs, 10)] = FNMS(T2O, T2X, T2N); + T31 = T2Z * T30; + T34 = T32 * T30; + ci[WS(rs, 10)] = FMA(T2v, T2X, T2Y); + } + { + E T1Q, T1X, T23, T26; + T2g = FMA(KP707106781, T1P, T1O); + T1Q = FNMS(KP707106781, T1P, T1O); + cr[WS(rs, 2)] = FNMS(T32, T33, T31); + ci[WS(rs, 2)] = FMA(T2Z, T33, T34); + T1X = T1T + T1W; + T2m = T1W - T1T; + T2l = FNMS(KP707106781, T22, T21); + T23 = FMA(KP707106781, T22, T21); + T26 = T24 - T25; + T2h = T24 + T25; + { + E T1N, T2a, T1Y, T27, T20, T1Z, T28; + T1N = W[20]; + T2a = FNMS(KP923879532, T1X, T1Q); + T1Y = FMA(KP923879532, T1X, T1Q); + T2d = FMA(KP923879532, T26, T23); + T27 = FNMS(KP923879532, T26, T23); + T20 = W[21]; + T1Z = T1N * T1Y; + T29 = W[4]; + T2c = W[5]; + T28 = T20 * T1Y; + cr[WS(rs, 11)] = FNMS(T20, T27, T1Z); + T2b = T29 * T2a; + T2e = T2c * T2a; + ci[WS(rs, 11)] = FMA(T1N, T27, T28); + } + } + } + { + E T1y, T1E, T1D, T1z, T1v, T1r, T1u, T1t, T1w; + { + E TM, T19, T1l, T1o; + T1y = FMA(KP707106781, TL, TA); + TM = FNMS(KP707106781, TL, TA); + cr[WS(rs, 3)] = FNMS(T2c, T2d, T2b); + ci[WS(rs, 3)] = FMA(T29, T2d, T2e); + T19 = TX - T18; + T1E = T18 + TX; + T1D = FMA(KP707106781, T1k, T1h); + T1l = FNMS(KP707106781, T1k, T1h); + T1o = T1m - T1n; + T1z = T1m + T1n; + { + E Tv, T1s, T1a, T1p, T1c, T1b, T1q; + Tv = W[24]; + T1s = FMA(KP923879532, T19, TM); + T1a = FNMS(KP923879532, T19, TM); + T1v = FMA(KP923879532, T1o, T1l); + T1p = FNMS(KP923879532, T1o, T1l); + T1c = W[25]; + T1b = Tv * T1a; + T1r = W[8]; + T1u = W[9]; + T1q = T1c * T1a; + cr[WS(rs, 13)] = FNMS(T1c, T1p, T1b); + T1t = T1r * T1s; + T1w = T1u * T1s; + ci[WS(rs, 13)] = FMA(Tv, T1p, T1q); + } + } + { + E T2q, T2t, T2s, T2u, T2r; + cr[WS(rs, 5)] = FNMS(T1u, T1v, T1t); + ci[WS(rs, 5)] = FMA(T1r, T1v, T1w); + { + E T2f, T2i, T2n, T2k, T2j, T2p, T2o; + T2f = W[12]; + T2q = FMA(KP923879532, T2h, T2g); + T2i = FNMS(KP923879532, T2h, T2g); + T2t = FNMS(KP923879532, T2m, T2l); + T2n = FMA(KP923879532, T2m, T2l); + T2k = W[13]; + T2j = T2f * T2i; + T2p = W[28]; + T2o = T2f * T2n; + T2s = W[29]; + cr[WS(rs, 7)] = FNMS(T2k, T2n, T2j); + T2u = T2p * T2t; + T2r = T2p * T2q; + ci[WS(rs, 7)] = FMA(T2k, T2i, T2o); + } + ci[WS(rs, 15)] = FMA(T2s, T2q, T2u); + cr[WS(rs, 15)] = FNMS(T2s, T2t, T2r); + { + E T1x, T1A, T1F, T1C, T1B, T1H, T1G; + T1x = W[16]; + T1I = FMA(KP923879532, T1z, T1y); + T1A = FNMS(KP923879532, T1z, T1y); + T1L = FMA(KP923879532, T1E, T1D); + T1F = FNMS(KP923879532, T1E, T1D); + T1C = W[17]; + T1B = T1x * T1A; + T1H = W[0]; + T1G = T1x * T1F; + T1K = W[1]; + cr[WS(rs, 9)] = FNMS(T1C, T1F, T1B); + T1M = T1H * T1L; + T1J = T1H * T1I; + ci[WS(rs, 9)] = FMA(T1C, T1A, T1G); + } + } + } + } + } + } + ci[WS(rs, 1)] = FMA(T1K, T1I, T1M); + cr[WS(rs, 1)] = FNMS(T1K, T1L, T1J); + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 16}, + {TW_NEXT, 1, 0} +}; + +static const hc2hc_desc desc = { 16, "hb_16", twinstr, &GENUS, {104, 30, 70, 0} }; + +void X(codelet_hb_16) (planner *p) { + X(khc2hc_register) (p, hb_16, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hb_16 -include hb.h */ + +/* + * This function contains 174 FP additions, 84 FP multiplications, + * (or, 136 additions, 46 multiplications, 38 fused multiply/add), + * 50 stack variables, 3 constants, and 64 memory accesses + */ +#include "hb.h" + +static void hb_16(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP382683432, +0.382683432365089771728459984030398866761344562); + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 30, MAKE_VOLATILE_STRIDE(32, rs)) { + E T7, T2K, T2W, Tw, T17, T1S, T2k, T1w, Te, TD, T1x, T10, T2n, T2L, T1Z; + E T2X, Tm, T1z, TN, T19, T2e, T2p, T2P, T2Z, Tt, T1A, TW, T1a, T27, T2q; + E T2S, T30; + { + E T3, T1Q, T16, T1R, T6, T2i, T13, T2j; + { + E T1, T2, T14, T15; + T1 = cr[0]; + T2 = ci[WS(rs, 7)]; + T3 = T1 + T2; + T1Q = T1 - T2; + T14 = ci[WS(rs, 11)]; + T15 = cr[WS(rs, 12)]; + T16 = T14 - T15; + T1R = T14 + T15; + } + { + E T4, T5, T11, T12; + T4 = cr[WS(rs, 4)]; + T5 = ci[WS(rs, 3)]; + T6 = T4 + T5; + T2i = T4 - T5; + T11 = ci[WS(rs, 15)]; + T12 = cr[WS(rs, 8)]; + T13 = T11 - T12; + T2j = T11 + T12; + } + T7 = T3 + T6; + T2K = T1Q + T1R; + T2W = T2j - T2i; + Tw = T3 - T6; + T17 = T13 - T16; + T1S = T1Q - T1R; + T2k = T2i + T2j; + T1w = T13 + T16; + } + { + E Ta, T1T, TC, T1U, Td, T1W, Tz, T1X; + { + E T8, T9, TA, TB; + T8 = cr[WS(rs, 2)]; + T9 = ci[WS(rs, 5)]; + Ta = T8 + T9; + T1T = T8 - T9; + TA = ci[WS(rs, 13)]; + TB = cr[WS(rs, 10)]; + TC = TA - TB; + T1U = TA + TB; + } + { + E Tb, Tc, Tx, Ty; + Tb = ci[WS(rs, 1)]; + Tc = cr[WS(rs, 6)]; + Td = Tb + Tc; + T1W = Tb - Tc; + Tx = ci[WS(rs, 9)]; + Ty = cr[WS(rs, 14)]; + Tz = Tx - Ty; + T1X = Tx + Ty; + } + Te = Ta + Td; + TD = Tz - TC; + T1x = TC + Tz; + T10 = Ta - Td; + { + E T2l, T2m, T1V, T1Y; + T2l = T1T + T1U; + T2m = T1W + T1X; + T2n = KP707106781 * (T2l - T2m); + T2L = KP707106781 * (T2l + T2m); + T1V = T1T - T1U; + T1Y = T1W - T1X; + T1Z = KP707106781 * (T1V + T1Y); + T2X = KP707106781 * (T1V - T1Y); + } + } + { + E Ti, T2b, TL, T2c, Tl, T28, TI, T29, TF, TM; + { + E Tg, Th, TJ, TK; + Tg = cr[WS(rs, 1)]; + Th = ci[WS(rs, 6)]; + Ti = Tg + Th; + T2b = Tg - Th; + TJ = ci[WS(rs, 10)]; + TK = cr[WS(rs, 13)]; + TL = TJ - TK; + T2c = TJ + TK; + } + { + E Tj, Tk, TG, TH; + Tj = cr[WS(rs, 5)]; + Tk = ci[WS(rs, 2)]; + Tl = Tj + Tk; + T28 = Tj - Tk; + TG = ci[WS(rs, 14)]; + TH = cr[WS(rs, 9)]; + TI = TG - TH; + T29 = TG + TH; + } + Tm = Ti + Tl; + T1z = TI + TL; + TF = Ti - Tl; + TM = TI - TL; + TN = TF - TM; + T19 = TF + TM; + { + E T2a, T2d, T2N, T2O; + T2a = T28 + T29; + T2d = T2b - T2c; + T2e = FMA(KP923879532, T2a, KP382683432 * T2d); + T2p = FNMS(KP382683432, T2a, KP923879532 * T2d); + T2N = T2b + T2c; + T2O = T29 - T28; + T2P = FNMS(KP923879532, T2O, KP382683432 * T2N); + T2Z = FMA(KP382683432, T2O, KP923879532 * T2N); + } + } + { + E Tp, T24, TU, T25, Ts, T21, TR, T22, TO, TV; + { + E Tn, To, TS, TT; + Tn = ci[0]; + To = cr[WS(rs, 7)]; + Tp = Tn + To; + T24 = Tn - To; + TS = ci[WS(rs, 12)]; + TT = cr[WS(rs, 11)]; + TU = TS - TT; + T25 = TS + TT; + } + { + E Tq, Tr, TP, TQ; + Tq = cr[WS(rs, 3)]; + Tr = ci[WS(rs, 4)]; + Ts = Tq + Tr; + T21 = Tq - Tr; + TP = ci[WS(rs, 8)]; + TQ = cr[WS(rs, 15)]; + TR = TP - TQ; + T22 = TP + TQ; + } + Tt = Tp + Ts; + T1A = TR + TU; + TO = Tp - Ts; + TV = TR - TU; + TW = TO + TV; + T1a = TV - TO; + { + E T23, T26, T2Q, T2R; + T23 = T21 - T22; + T26 = T24 - T25; + T27 = FNMS(KP382683432, T26, KP923879532 * T23); + T2q = FMA(KP382683432, T23, KP923879532 * T26); + T2Q = T24 + T25; + T2R = T21 + T22; + T2S = FNMS(KP923879532, T2R, KP382683432 * T2Q); + T30 = FMA(KP382683432, T2R, KP923879532 * T2Q); + } + } + { + E Tf, Tu, T1u, T1y, T1B, T1C, T1t, T1v; + Tf = T7 + Te; + Tu = Tm + Tt; + T1u = Tf - Tu; + T1y = T1w + T1x; + T1B = T1z + T1A; + T1C = T1y - T1B; + cr[0] = Tf + Tu; + ci[0] = T1y + T1B; + T1t = W[14]; + T1v = W[15]; + cr[WS(rs, 8)] = FNMS(T1v, T1C, T1t * T1u); + ci[WS(rs, 8)] = FMA(T1v, T1u, T1t * T1C); + } + { + E T2U, T34, T32, T36; + { + E T2M, T2T, T2Y, T31; + T2M = T2K - T2L; + T2T = T2P + T2S; + T2U = T2M - T2T; + T34 = T2M + T2T; + T2Y = T2W + T2X; + T31 = T2Z - T30; + T32 = T2Y - T31; + T36 = T2Y + T31; + } + { + E T2J, T2V, T33, T35; + T2J = W[20]; + T2V = W[21]; + cr[WS(rs, 11)] = FNMS(T2V, T32, T2J * T2U); + ci[WS(rs, 11)] = FMA(T2V, T2U, T2J * T32); + T33 = W[4]; + T35 = W[5]; + cr[WS(rs, 3)] = FNMS(T35, T36, T33 * T34); + ci[WS(rs, 3)] = FMA(T35, T34, T33 * T36); + } + } + { + E T3a, T3g, T3e, T3i; + { + E T38, T39, T3c, T3d; + T38 = T2K + T2L; + T39 = T2Z + T30; + T3a = T38 - T39; + T3g = T38 + T39; + T3c = T2W - T2X; + T3d = T2P - T2S; + T3e = T3c + T3d; + T3i = T3c - T3d; + } + { + E T37, T3b, T3f, T3h; + T37 = W[12]; + T3b = W[13]; + cr[WS(rs, 7)] = FNMS(T3b, T3e, T37 * T3a); + ci[WS(rs, 7)] = FMA(T37, T3e, T3b * T3a); + T3f = W[28]; + T3h = W[29]; + cr[WS(rs, 15)] = FNMS(T3h, T3i, T3f * T3g); + ci[WS(rs, 15)] = FMA(T3f, T3i, T3h * T3g); + } + } + { + E TY, T1e, T1c, T1g; + { + E TE, TX, T18, T1b; + TE = Tw + TD; + TX = KP707106781 * (TN + TW); + TY = TE - TX; + T1e = TE + TX; + T18 = T10 + T17; + T1b = KP707106781 * (T19 + T1a); + T1c = T18 - T1b; + T1g = T18 + T1b; + } + { + E Tv, TZ, T1d, T1f; + Tv = W[18]; + TZ = W[19]; + cr[WS(rs, 10)] = FNMS(TZ, T1c, Tv * TY); + ci[WS(rs, 10)] = FMA(TZ, TY, Tv * T1c); + T1d = W[2]; + T1f = W[3]; + cr[WS(rs, 2)] = FNMS(T1f, T1g, T1d * T1e); + ci[WS(rs, 2)] = FMA(T1f, T1e, T1d * T1g); + } + } + { + E T1k, T1q, T1o, T1s; + { + E T1i, T1j, T1m, T1n; + T1i = Tw - TD; + T1j = KP707106781 * (T1a - T19); + T1k = T1i - T1j; + T1q = T1i + T1j; + T1m = T17 - T10; + T1n = KP707106781 * (TN - TW); + T1o = T1m - T1n; + T1s = T1m + T1n; + } + { + E T1h, T1l, T1p, T1r; + T1h = W[26]; + T1l = W[27]; + cr[WS(rs, 14)] = FNMS(T1l, T1o, T1h * T1k); + ci[WS(rs, 14)] = FMA(T1h, T1o, T1l * T1k); + T1p = W[10]; + T1r = W[11]; + cr[WS(rs, 6)] = FNMS(T1r, T1s, T1p * T1q); + ci[WS(rs, 6)] = FMA(T1p, T1s, T1r * T1q); + } + } + { + E T2g, T2u, T2s, T2w; + { + E T20, T2f, T2o, T2r; + T20 = T1S - T1Z; + T2f = T27 - T2e; + T2g = T20 - T2f; + T2u = T20 + T2f; + T2o = T2k - T2n; + T2r = T2p - T2q; + T2s = T2o - T2r; + T2w = T2o + T2r; + } + { + E T1P, T2h, T2t, T2v; + T1P = W[24]; + T2h = W[25]; + cr[WS(rs, 13)] = FNMS(T2h, T2s, T1P * T2g); + ci[WS(rs, 13)] = FMA(T2h, T2g, T1P * T2s); + T2t = W[8]; + T2v = W[9]; + cr[WS(rs, 5)] = FNMS(T2v, T2w, T2t * T2u); + ci[WS(rs, 5)] = FMA(T2v, T2u, T2t * T2w); + } + } + { + E T2A, T2G, T2E, T2I; + { + E T2y, T2z, T2C, T2D; + T2y = T1S + T1Z; + T2z = T2p + T2q; + T2A = T2y - T2z; + T2G = T2y + T2z; + T2C = T2k + T2n; + T2D = T2e + T27; + T2E = T2C - T2D; + T2I = T2C + T2D; + } + { + E T2x, T2B, T2F, T2H; + T2x = W[16]; + T2B = W[17]; + cr[WS(rs, 9)] = FNMS(T2B, T2E, T2x * T2A); + ci[WS(rs, 9)] = FMA(T2x, T2E, T2B * T2A); + T2F = W[0]; + T2H = W[1]; + cr[WS(rs, 1)] = FNMS(T2H, T2I, T2F * T2G); + ci[WS(rs, 1)] = FMA(T2F, T2I, T2H * T2G); + } + } + { + E T1G, T1M, T1K, T1O; + { + E T1E, T1F, T1I, T1J; + T1E = T7 - Te; + T1F = T1A - T1z; + T1G = T1E - T1F; + T1M = T1E + T1F; + T1I = T1w - T1x; + T1J = Tm - Tt; + T1K = T1I - T1J; + T1O = T1J + T1I; + } + { + E T1D, T1H, T1L, T1N; + T1D = W[22]; + T1H = W[23]; + cr[WS(rs, 12)] = FNMS(T1H, T1K, T1D * T1G); + ci[WS(rs, 12)] = FMA(T1D, T1K, T1H * T1G); + T1L = W[6]; + T1N = W[7]; + cr[WS(rs, 4)] = FNMS(T1N, T1O, T1L * T1M); + ci[WS(rs, 4)] = FMA(T1L, T1O, T1N * T1M); + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 16}, + {TW_NEXT, 1, 0} +}; + +static const hc2hc_desc desc = { 16, "hb_16", twinstr, &GENUS, {136, 46, 38, 0} }; + +void X(codelet_hb_16) (planner *p) { + X(khc2hc_register) (p, hb_16, &desc); +} +#endif /* HAVE_FMA */