Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/scalar/r2cb/hb2_5.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/scalar/r2cb/hb2_5.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,280 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:41:29 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 5 -dif -name hb2_5 -include hb.h */ + +/* + * This function contains 44 FP additions, 40 FP multiplications, + * (or, 14 additions, 10 multiplications, 30 fused multiply/add), + * 51 stack variables, 4 constants, and 20 memory accesses + */ +#include "hb.h" + +static void hb2_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP618033988, +0.618033988749894848204586834365638117720309180); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) { + E T9, TB, Tz, Tm, T1, TG, TO, TJ, TC, Tn, Tg, To, Tf, Tw, TQ; + E T8, Tb, Th, Ta, Ti, Tp; + T9 = W[0]; + TB = W[3]; + Tz = W[2]; + Tm = W[1]; + { + E T4, Tu, T5, T6; + T1 = cr[0]; + { + E TF, TA, T2, T3; + TF = T9 * TB; + TA = T9 * Tz; + T2 = cr[WS(rs, 1)]; + T3 = ci[0]; + TG = FMA(Tm, Tz, TF); + TO = FNMS(Tm, Tz, TF); + TJ = FMA(Tm, TB, TA); + TC = FNMS(Tm, TB, TA); + T4 = T2 + T3; + Tu = T2 - T3; + T5 = cr[WS(rs, 2)]; + T6 = ci[WS(rs, 1)]; + } + Tn = ci[WS(rs, 4)]; + { + E Td, Te, T7, Tv; + Td = ci[WS(rs, 3)]; + Te = cr[WS(rs, 4)]; + T7 = T5 + T6; + Tv = T5 - T6; + Tg = ci[WS(rs, 2)]; + To = Td - Te; + Tf = Td + Te; + Tw = FMA(KP618033988, Tv, Tu); + TQ = FNMS(KP618033988, Tu, Tv); + T8 = T4 + T7; + Tb = T4 - T7; + Th = cr[WS(rs, 3)]; + } + } + cr[0] = T1 + T8; + Ta = FNMS(KP250000000, T8, T1); + Ti = Tg + Th; + Tp = Tg - Th; + { + E Tc, TK, Ts, Tq; + Tc = FMA(KP559016994, Tb, Ta); + TK = FNMS(KP559016994, Tb, Ta); + Ts = To - Tp; + Tq = To + Tp; + { + E Tj, TL, Tr, TM, TT; + Tj = FMA(KP618033988, Ti, Tf); + TL = FNMS(KP618033988, Tf, Ti); + ci[0] = Tn + Tq; + Tr = FNMS(KP250000000, Tq, Tn); + TM = FMA(KP951056516, TL, TK); + TT = FNMS(KP951056516, TL, TK); + { + E Tk, TD, Tt, TP; + Tk = FNMS(KP951056516, Tj, Tc); + TD = FMA(KP951056516, Tj, Tc); + Tt = FMA(KP559016994, Ts, Tr); + TP = FNMS(KP559016994, Ts, Tr); + { + E TW, TU, TS, TN; + TW = TB * TT; + TU = Tz * TT; + TS = TO * TM; + TN = TJ * TM; + { + E TI, TE, Ty, Tl; + TI = TG * TD; + TE = TC * TD; + Ty = Tm * Tk; + Tl = T9 * Tk; + { + E TR, TV, Tx, TH; + TR = FNMS(KP951056516, TQ, TP); + TV = FMA(KP951056516, TQ, TP); + Tx = FMA(KP951056516, Tw, Tt); + TH = FNMS(KP951056516, Tw, Tt); + ci[WS(rs, 3)] = FMA(Tz, TV, TW); + cr[WS(rs, 3)] = FNMS(TB, TV, TU); + ci[WS(rs, 2)] = FMA(TJ, TR, TS); + cr[WS(rs, 2)] = FNMS(TO, TR, TN); + ci[WS(rs, 4)] = FMA(TC, TH, TI); + cr[WS(rs, 4)] = FNMS(TG, TH, TE); + ci[WS(rs, 1)] = FMA(T9, Tx, Ty); + cr[WS(rs, 1)] = FNMS(Tm, Tx, Tl); + } + } + } + } + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_CEXP, 1, 1}, + {TW_CEXP, 1, 3}, + {TW_NEXT, 1, 0} +}; + +static const hc2hc_desc desc = { 5, "hb2_5", twinstr, &GENUS, {14, 10, 30, 0} }; + +void X(codelet_hb2_5) (planner *p) { + X(khc2hc_register) (p, hb2_5, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 5 -dif -name hb2_5 -include hb.h */ + +/* + * This function contains 44 FP additions, 32 FP multiplications, + * (or, 30 additions, 18 multiplications, 14 fused multiply/add), + * 33 stack variables, 4 constants, and 20 memory accesses + */ +#include "hb.h" + +static void hb2_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP587785252, +0.587785252292473129168705954639072768597652438); + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) { + E Th, Tk, Ti, Tl, Tn, TP, Tx, TN; + { + E Tj, Tw, Tm, Tv; + Th = W[0]; + Tk = W[1]; + Ti = W[2]; + Tl = W[3]; + Tj = Th * Ti; + Tw = Tk * Ti; + Tm = Tk * Tl; + Tv = Th * Tl; + Tn = Tj + Tm; + TP = Tv + Tw; + Tx = Tv - Tw; + TN = Tj - Tm; + } + { + E T1, Tp, TK, TA, T8, To, T9, Tt, TI, TC, Tg, TB; + { + E T4, Ty, T7, Tz; + T1 = cr[0]; + { + E T2, T3, T5, T6; + T2 = cr[WS(rs, 1)]; + T3 = ci[0]; + T4 = T2 + T3; + Ty = T2 - T3; + T5 = cr[WS(rs, 2)]; + T6 = ci[WS(rs, 1)]; + T7 = T5 + T6; + Tz = T5 - T6; + } + Tp = KP559016994 * (T4 - T7); + TK = FMA(KP951056516, Ty, KP587785252 * Tz); + TA = FNMS(KP951056516, Tz, KP587785252 * Ty); + T8 = T4 + T7; + To = FNMS(KP250000000, T8, T1); + } + { + E Tc, Tr, Tf, Ts; + T9 = ci[WS(rs, 4)]; + { + E Ta, Tb, Td, Te; + Ta = ci[WS(rs, 3)]; + Tb = cr[WS(rs, 4)]; + Tc = Ta - Tb; + Tr = Ta + Tb; + Td = ci[WS(rs, 2)]; + Te = cr[WS(rs, 3)]; + Tf = Td - Te; + Ts = Td + Te; + } + Tt = FNMS(KP951056516, Ts, KP587785252 * Tr); + TI = FMA(KP951056516, Tr, KP587785252 * Ts); + TC = KP559016994 * (Tc - Tf); + Tg = Tc + Tf; + TB = FNMS(KP250000000, Tg, T9); + } + cr[0] = T1 + T8; + ci[0] = T9 + Tg; + { + E Tu, TF, TE, TG, Tq, TD; + Tq = To - Tp; + Tu = Tq - Tt; + TF = Tq + Tt; + TD = TB - TC; + TE = TA + TD; + TG = TD - TA; + cr[WS(rs, 2)] = FNMS(Tx, TE, Tn * Tu); + ci[WS(rs, 2)] = FMA(Tn, TE, Tx * Tu); + cr[WS(rs, 3)] = FNMS(Tl, TG, Ti * TF); + ci[WS(rs, 3)] = FMA(Ti, TG, Tl * TF); + } + { + E TJ, TO, TM, TQ, TH, TL; + TH = Tp + To; + TJ = TH - TI; + TO = TH + TI; + TL = TC + TB; + TM = TK + TL; + TQ = TL - TK; + cr[WS(rs, 1)] = FNMS(Tk, TM, Th * TJ); + ci[WS(rs, 1)] = FMA(Th, TM, Tk * TJ); + cr[WS(rs, 4)] = FNMS(TP, TQ, TN * TO); + ci[WS(rs, 4)] = FMA(TN, TQ, TP * TO); + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_CEXP, 1, 1}, + {TW_CEXP, 1, 3}, + {TW_NEXT, 1, 0} +}; + +static const hc2hc_desc desc = { 5, "hb2_5", twinstr, &GENUS, {30, 18, 14, 0} }; + +void X(codelet_hb2_5) (planner *p) { + X(khc2hc_register) (p, hb2_5, &desc); +} +#endif /* HAVE_FMA */