diff src/fftw-3.3.3/rdft/problem.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/rdft/problem.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,238 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+
+#include "rdft.h"
+#include <stddef.h>
+
+static void destroy(problem *ego_)
+{
+     problem_rdft *ego = (problem_rdft *) ego_;
+#if !defined(STRUCT_HACK_C99) && !defined(STRUCT_HACK_KR)
+     X(ifree0)(ego->kind);
+#endif
+     X(tensor_destroy2)(ego->vecsz, ego->sz);
+     X(ifree)(ego_);
+}
+
+static void kind_hash(md5 *m, const rdft_kind *kind, int rnk)
+{
+     int i;
+     for (i = 0; i < rnk; ++i)
+	  X(md5int)(m, kind[i]);
+}
+
+static void hash(const problem *p_, md5 *m)
+{
+     const problem_rdft *p = (const problem_rdft *) p_;
+     X(md5puts)(m, "rdft");
+     X(md5int)(m, p->I == p->O);
+     kind_hash(m, p->kind, p->sz->rnk);
+     X(md5int)(m, X(alignment_of)(p->I));
+     X(md5int)(m, X(alignment_of)(p->O));
+     X(tensor_md5)(m, p->sz);
+     X(tensor_md5)(m, p->vecsz);
+}
+
+static void recur(const iodim *dims, int rnk, R *I)
+{
+     if (rnk == RNK_MINFTY)
+          return;
+     else if (rnk == 0)
+          I[0] = K(0.0);
+     else if (rnk > 0) {
+          INT i, n = dims[0].n, is = dims[0].is;
+
+	  if (rnk == 1) {
+	       /* this case is redundant but faster */
+	       for (i = 0; i < n; ++i)
+		    I[i * is] = K(0.0);
+	  } else {
+	       for (i = 0; i < n; ++i)
+		    recur(dims + 1, rnk - 1, I + i * is);
+	  }
+     }
+}
+
+void X(rdft_zerotens)(tensor *sz, R *I)
+{
+     recur(sz->dims, sz->rnk, I);
+}
+
+#define KSTR_LEN 8
+
+const char *X(rdft_kind_str)(rdft_kind kind)
+{
+     static const char kstr[][KSTR_LEN] = {
+	  "r2hc", "r2hc01", "r2hc10", "r2hc11",
+	  "hc2r", "hc2r01", "hc2r10", "hc2r11",
+	  "dht",
+	  "redft00", "redft01", "redft10", "redft11",
+	  "rodft00", "rodft01", "rodft10", "rodft11"
+     };
+     A(kind >= 0 && kind < sizeof(kstr) / KSTR_LEN);
+     return kstr[kind];
+}
+
+static void print(const problem *ego_, printer *p)
+{
+     const problem_rdft *ego = (const problem_rdft *) ego_;
+     int i;
+     p->print(p, "(rdft %d %D %T %T", 
+	      X(alignment_of)(ego->I),
+	      (INT)(ego->O - ego->I), 
+	      ego->sz,
+	      ego->vecsz);
+     for (i = 0; i < ego->sz->rnk; ++i)
+	  p->print(p, " %d", (int)ego->kind[i]);
+     p->print(p, ")");
+}
+
+static void zero(const problem *ego_)
+{
+     const problem_rdft *ego = (const problem_rdft *) ego_;
+     tensor *sz = X(tensor_append)(ego->vecsz, ego->sz);
+     X(rdft_zerotens)(sz, UNTAINT(ego->I));
+     X(tensor_destroy)(sz);
+}
+
+static const problem_adt padt =
+{
+     PROBLEM_RDFT,
+     hash,
+     zero,
+     print,
+     destroy
+};
+
+/* Dimensions of size 1 that are not REDFT/RODFT are no-ops and can be
+   eliminated.  REDFT/RODFT unit dimensions often have factors of 2.0
+   and suchlike from normalization and phases, although in principle
+   these constant factors from different dimensions could be combined. */
+static int nontrivial(const iodim *d, rdft_kind kind)
+{
+     return (d->n > 1 || kind == R2HC11 || kind == HC2R11
+	     || (REODFT_KINDP(kind) && kind != REDFT01 && kind != RODFT01));
+}
+
+problem *X(mkproblem_rdft)(const tensor *sz, const tensor *vecsz,
+			   R *I, R *O, const rdft_kind *kind)
+{
+     problem_rdft *ego;
+     int rnk = sz->rnk;
+     int i;
+
+     A(X(tensor_kosherp)(sz));
+     A(X(tensor_kosherp)(vecsz));
+     A(FINITE_RNK(sz->rnk));
+
+     if (UNTAINT(I) == UNTAINT(O))
+	  I = O = JOIN_TAINT(I, O);
+
+     if (I == O && !X(tensor_inplace_locations)(sz, vecsz))
+	  return X(mkproblem_unsolvable)();
+
+     for (i = rnk = 0; i < sz->rnk; ++i) {
+          A(sz->dims[i].n > 0);
+          if (nontrivial(sz->dims + i, kind[i]))
+               ++rnk;
+     }
+
+#if defined(STRUCT_HACK_KR)
+     ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft)
+					 + sizeof(rdft_kind)
+					 * (rnk > 0 ? rnk - 1 : 0), &padt);
+#elif defined(STRUCT_HACK_C99)
+     ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft)
+					 + sizeof(rdft_kind) * rnk, &padt);
+#else
+     ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft), &padt);
+     ego->kind = (rdft_kind *) MALLOC(sizeof(rdft_kind) * rnk, PROBLEMS);
+#endif
+
+     /* do compression and sorting as in X(tensor_compress), but take
+	transform kind into account (sigh) */
+     ego->sz = X(mktensor)(rnk);
+     for (i = rnk = 0; i < sz->rnk; ++i) {
+          if (nontrivial(sz->dims + i, kind[i])) {
+	       ego->kind[rnk] = kind[i];
+               ego->sz->dims[rnk++] = sz->dims[i];
+	  }
+     }
+     for (i = 0; i + 1 < rnk; ++i) {
+	  int j;
+	  for (j = i + 1; j < rnk; ++j)
+	       if (X(dimcmp)(ego->sz->dims + i, ego->sz->dims + j) > 0) {
+		    iodim dswap;
+		    rdft_kind kswap;
+		    dswap = ego->sz->dims[i];
+		    ego->sz->dims[i] = ego->sz->dims[j];
+		    ego->sz->dims[j] = dswap;
+		    kswap = ego->kind[i];
+		    ego->kind[i] = ego->kind[j];
+		    ego->kind[j] = kswap;
+	       }
+     }
+
+     for (i = 0; i < rnk; ++i)
+	  if (ego->sz->dims[i].n == 2 && (ego->kind[i] == REDFT00
+					  || ego->kind[i] == DHT
+					  || ego->kind[i] == HC2R))
+	       ego->kind[i] = R2HC; /* size-2 transforms are equivalent */
+
+     ego->vecsz = X(tensor_compress_contiguous)(vecsz);
+     ego->I = I;
+     ego->O = O;
+
+     A(FINITE_RNK(ego->sz->rnk));
+
+     return &(ego->super);
+}
+
+/* Same as X(mkproblem_rdft), but also destroy input tensors. */
+problem *X(mkproblem_rdft_d)(tensor *sz, tensor *vecsz,
+			     R *I, R *O, const rdft_kind *kind)
+{
+     problem *p = X(mkproblem_rdft)(sz, vecsz, I, O, kind);
+     X(tensor_destroy2)(vecsz, sz);
+     return p;
+}
+
+/* As above, but for rnk <= 1 only and takes a scalar kind parameter */
+problem *X(mkproblem_rdft_1)(const tensor *sz, const tensor *vecsz,
+			     R *I, R *O, rdft_kind kind)
+{
+     A(sz->rnk <= 1);
+     return X(mkproblem_rdft)(sz, vecsz, I, O, &kind);
+}
+
+problem *X(mkproblem_rdft_1_d)(tensor *sz, tensor *vecsz,
+			       R *I, R *O, rdft_kind kind)
+{
+     A(sz->rnk <= 1);
+     return X(mkproblem_rdft_d)(sz, vecsz, I, O, &kind);
+}
+
+/* create a zero-dimensional problem */
+problem *X(mkproblem_rdft_0_d)(tensor *vecsz, R *I, R *O)
+{
+     return X(mkproblem_rdft_d)(X(mktensor_0d)(), vecsz, I, O, 
+				(const rdft_kind *)0);
+}