Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/dht-rader.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/dht-rader.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,386 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +#include "rdft.h" + +/* + * Compute DHTs of prime sizes using Rader's trick: turn them + * into convolutions of size n - 1, which we then perform via a pair + * of FFTs. (We can then do prime real FFTs via rdft-dht.c.) + * + * Optionally (determined by the "pad" field of the solver), we can + * perform the (cyclic) convolution by zero-padding to a size + * >= 2*(n-1) - 1. This is advantageous if n-1 has large prime factors. + * + */ + +typedef struct { + solver super; + int pad; +} S; + +typedef struct { + plan_rdft super; + + plan *cld1, *cld2; + R *omega; + INT n, npad, g, ginv; + INT is, os; + plan *cld_omega; +} P; + +static rader_tl *omegas = 0; + +/***************************************************************************/ + +/* If R2HC_ONLY_CONV is 1, we use a trick to perform the convolution + purely in terms of R2HC transforms, as opposed to R2HC followed by H2RC. + This requires a few more operations, but allows us to share the same + plan/codelets for both Rader children. */ +#define R2HC_ONLY_CONV 1 + +static void apply(const plan *ego_, R *I, R *O) +{ + const P *ego = (const P *) ego_; + INT n = ego->n; /* prime */ + INT npad = ego->npad; /* == n - 1 for unpadded Rader; always even */ + INT is = ego->is, os; + INT k, gpower, g; + R *buf, *omega; + R r0; + + buf = (R *) MALLOC(sizeof(R) * npad, BUFFERS); + + /* First, permute the input, storing in buf: */ + g = ego->g; + for (gpower = 1, k = 0; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) { + buf[k] = I[gpower * is]; + } + /* gpower == g^(n-1) mod n == 1 */; + + A(n - 1 <= npad); + for (k = n - 1; k < npad; ++k) /* optionally, zero-pad convolution */ + buf[k] = 0; + + os = ego->os; + + /* compute RDFT of buf, storing in buf (i.e., in-place): */ + { + plan_rdft *cld = (plan_rdft *) ego->cld1; + cld->apply((plan *) cld, buf, buf); + } + + /* set output DC component: */ + O[0] = (r0 = I[0]) + buf[0]; + + /* now, multiply by omega: */ + omega = ego->omega; + buf[0] *= omega[0]; + for (k = 1; k < npad/2; ++k) { + E rB, iB, rW, iW, a, b; + rW = omega[k]; + iW = omega[npad - k]; + rB = buf[k]; + iB = buf[npad - k]; + a = rW * rB - iW * iB; + b = rW * iB + iW * rB; +#if R2HC_ONLY_CONV + buf[k] = a + b; + buf[npad - k] = a - b; +#else + buf[k] = a; + buf[npad - k] = b; +#endif + } + /* Nyquist component: */ + A(k + k == npad); /* since npad is even */ + buf[k] *= omega[k]; + + /* this will add input[0] to all of the outputs after the ifft */ + buf[0] += r0; + + /* inverse FFT: */ + { + plan_rdft *cld = (plan_rdft *) ego->cld2; + cld->apply((plan *) cld, buf, buf); + } + + /* do inverse permutation to unshuffle the output: */ + A(gpower == 1); +#if R2HC_ONLY_CONV + O[os] = buf[0]; + gpower = g = ego->ginv; + A(npad == n - 1 || npad/2 >= n - 1); + if (npad == n - 1) { + for (k = 1; k < npad/2; ++k, gpower = MULMOD(gpower, g, n)) { + O[gpower * os] = buf[k] + buf[npad - k]; + } + O[gpower * os] = buf[k]; + ++k, gpower = MULMOD(gpower, g, n); + for (; k < npad; ++k, gpower = MULMOD(gpower, g, n)) { + O[gpower * os] = buf[npad - k] - buf[k]; + } + } + else { + for (k = 1; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) { + O[gpower * os] = buf[k] + buf[npad - k]; + } + } +#else + g = ego->ginv; + for (k = 0; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) { + O[gpower * os] = buf[k]; + } +#endif + A(gpower == 1); + + X(ifree)(buf); +} + +static R *mkomega(enum wakefulness wakefulness, + plan *p_, INT n, INT npad, INT ginv) +{ + plan_rdft *p = (plan_rdft *) p_; + R *omega; + INT i, gpower; + trigreal scale; + triggen *t; + + if ((omega = X(rader_tl_find)(n, npad + 1, ginv, omegas))) + return omega; + + omega = (R *)MALLOC(sizeof(R) * npad, TWIDDLES); + + scale = npad; /* normalization for convolution */ + + t = X(mktriggen)(wakefulness, n); + for (i = 0, gpower = 1; i < n-1; ++i, gpower = MULMOD(gpower, ginv, n)) { + trigreal w[2]; + t->cexpl(t, gpower, w); + omega[i] = (w[0] + w[1]) / scale; + } + X(triggen_destroy)(t); + A(gpower == 1); + + A(npad == n - 1 || npad >= 2*(n - 1) - 1); + + for (; i < npad; ++i) + omega[i] = K(0.0); + if (npad > n - 1) + for (i = 1; i < n-1; ++i) + omega[npad - i] = omega[n - 1 - i]; + + p->apply(p_, omega, omega); + + X(rader_tl_insert)(n, npad + 1, ginv, omega, &omegas); + return omega; +} + +static void free_omega(R *omega) +{ + X(rader_tl_delete)(omega, &omegas); +} + +/***************************************************************************/ + +static void awake(plan *ego_, enum wakefulness wakefulness) +{ + P *ego = (P *) ego_; + + X(plan_awake)(ego->cld1, wakefulness); + X(plan_awake)(ego->cld2, wakefulness); + X(plan_awake)(ego->cld_omega, wakefulness); + + switch (wakefulness) { + case SLEEPY: + free_omega(ego->omega); + ego->omega = 0; + break; + default: + ego->g = X(find_generator)(ego->n); + ego->ginv = X(power_mod)(ego->g, ego->n - 2, ego->n); + A(MULMOD(ego->g, ego->ginv, ego->n) == 1); + + A(!ego->omega); + ego->omega = mkomega(wakefulness, + ego->cld_omega,ego->n,ego->npad,ego->ginv); + break; + } +} + +static void destroy(plan *ego_) +{ + P *ego = (P *) ego_; + X(plan_destroy_internal)(ego->cld_omega); + X(plan_destroy_internal)(ego->cld2); + X(plan_destroy_internal)(ego->cld1); +} + +static void print(const plan *ego_, printer *p) +{ + const P *ego = (const P *) ego_; + + p->print(p, "(dht-rader-%D/%D%ois=%oos=%(%p%)", + ego->n, ego->npad, ego->is, ego->os, ego->cld1); + if (ego->cld2 != ego->cld1) + p->print(p, "%(%p%)", ego->cld2); + if (ego->cld_omega != ego->cld1 && ego->cld_omega != ego->cld2) + p->print(p, "%(%p%)", ego->cld_omega); + p->putchr(p, ')'); +} + +static int applicable(const solver *ego, const problem *p_, const planner *plnr) +{ + const problem_rdft *p = (const problem_rdft *) p_; + UNUSED(ego); + return (1 + && p->sz->rnk == 1 + && p->vecsz->rnk == 0 + && p->kind[0] == DHT + && X(is_prime)(p->sz->dims[0].n) + && p->sz->dims[0].n > 2 + && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > RADER_MAX_SLOW) + /* proclaim the solver SLOW if p-1 is not easily + factorizable. Unlike in the complex case where + Bluestein can solve the problem, in the DHT case we + may have no other choice */ + && CIMPLIES(NO_SLOWP(plnr), X(factors_into_small_primes)(p->sz->dims[0].n - 1)) + ); +} + +static INT choose_transform_size(INT minsz) +{ + static const INT primes[] = { 2, 3, 5, 0 }; + while (!X(factors_into)(minsz, primes) || minsz % 2) + ++minsz; + return minsz; +} + +static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) +{ + const S *ego = (const S *) ego_; + const problem_rdft *p = (const problem_rdft *) p_; + P *pln; + INT n, npad; + INT is, os; + plan *cld1 = (plan *) 0; + plan *cld2 = (plan *) 0; + plan *cld_omega = (plan *) 0; + R *buf = (R *) 0; + problem *cldp; + + static const plan_adt padt = { + X(rdft_solve), awake, print, destroy + }; + + if (!applicable(ego_, p_, plnr)) + return (plan *) 0; + + n = p->sz->dims[0].n; + is = p->sz->dims[0].is; + os = p->sz->dims[0].os; + + if (ego->pad) + npad = choose_transform_size(2 * (n - 1) - 1); + else + npad = n - 1; + + /* initial allocation for the purpose of planning */ + buf = (R *) MALLOC(sizeof(R) * npad, BUFFERS); + + cld1 = X(mkplan_f_d)(plnr, + X(mkproblem_rdft_1_d)(X(mktensor_1d)(npad, 1, 1), + X(mktensor_1d)(1, 0, 0), + buf, buf, + R2HC), + NO_SLOW, 0, 0); + if (!cld1) goto nada; + + cldp = + X(mkproblem_rdft_1_d)( + X(mktensor_1d)(npad, 1, 1), + X(mktensor_1d)(1, 0, 0), + buf, buf, +#if R2HC_ONLY_CONV + R2HC +#else + HC2R +#endif + ); + if (!(cld2 = X(mkplan_f_d)(plnr, cldp, NO_SLOW, 0, 0))) + goto nada; + + /* plan for omega */ + cld_omega = X(mkplan_f_d)(plnr, + X(mkproblem_rdft_1_d)( + X(mktensor_1d)(npad, 1, 1), + X(mktensor_1d)(1, 0, 0), + buf, buf, R2HC), + NO_SLOW, ESTIMATE, 0); + if (!cld_omega) goto nada; + + /* deallocate buffers; let awake() or apply() allocate them for real */ + X(ifree)(buf); + buf = 0; + + pln = MKPLAN_RDFT(P, &padt, apply); + pln->cld1 = cld1; + pln->cld2 = cld2; + pln->cld_omega = cld_omega; + pln->omega = 0; + pln->n = n; + pln->npad = npad; + pln->is = is; + pln->os = os; + + X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops); + pln->super.super.ops.other += (npad/2-1)*6 + npad + n + (n-1) * ego->pad; + pln->super.super.ops.add += (npad/2-1)*2 + 2 + (n-1) * ego->pad; + pln->super.super.ops.mul += (npad/2-1)*4 + 2 + ego->pad; +#if R2HC_ONLY_CONV + pln->super.super.ops.other += n-2 - ego->pad; + pln->super.super.ops.add += (npad/2-1)*2 + (n-2) - ego->pad; +#endif + + return &(pln->super.super); + + nada: + X(ifree0)(buf); + X(plan_destroy_internal)(cld_omega); + X(plan_destroy_internal)(cld2); + X(plan_destroy_internal)(cld1); + return 0; +} + +/* constructors */ + +static solver *mksolver(int pad) +{ + static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; + S *slv = MKSOLVER(S, &sadt); + slv->pad = pad; + return &(slv->super); +} + +void X(dht_rader_register)(planner *p) +{ + REGISTER_SOLVER(p, mksolver(0)); + REGISTER_SOLVER(p, mksolver(1)); +}