Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/dft-r2hc.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/dft-r2hc.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,194 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + + +/* Compute the complex DFT by combining R2HC RDFTs on the real + and imaginary parts. This could be useful for people just wanting + to link to the real codelets and not the complex ones. It could + also even be faster than the complex algorithms for split (as opposed + to interleaved) real/imag complex data. */ + +#include "rdft.h" +#include "dft.h" + +typedef struct { + solver super; +} S; + +typedef struct { + plan_dft super; + plan *cld; + INT ishift, oshift; + INT os; + INT n; +} P; + +static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) +{ + const P *ego = (const P *) ego_; + INT n; + + UNUSED(ii); + + { /* transform vector of real & imag parts: */ + plan_rdft *cld = (plan_rdft *) ego->cld; + cld->apply((plan *) cld, ri + ego->ishift, ro + ego->oshift); + } + + n = ego->n; + if (n > 1) { + INT i, os = ego->os; + for (i = 1; i < (n + 1)/2; ++i) { + E rop, iop, iom, rom; + rop = ro[os * i]; + iop = io[os * i]; + rom = ro[os * (n - i)]; + iom = io[os * (n - i)]; + ro[os * i] = rop - iom; + io[os * i] = iop + rom; + ro[os * (n - i)] = rop + iom; + io[os * (n - i)] = iop - rom; + } + } +} + +static void awake(plan *ego_, enum wakefulness wakefulness) +{ + P *ego = (P *) ego_; + X(plan_awake)(ego->cld, wakefulness); +} + +static void destroy(plan *ego_) +{ + P *ego = (P *) ego_; + X(plan_destroy_internal)(ego->cld); +} + +static void print(const plan *ego_, printer *p) +{ + const P *ego = (const P *) ego_; + p->print(p, "(dft-r2hc-%D%(%p%))", ego->n, ego->cld); +} + + +static int applicable0(const problem *p_) +{ + const problem_dft *p = (const problem_dft *) p_; + return ((p->sz->rnk == 1 && p->vecsz->rnk == 0) + || (p->sz->rnk == 0 && FINITE_RNK(p->vecsz->rnk)) + ); +} + +static int splitp(R *r, R *i, INT n, INT s) +{ + return ((r > i ? (r - i) : (i - r)) >= n * (s > 0 ? s : 0-s)); +} + +static int applicable(const problem *p_, const planner *plnr) +{ + if (!applicable0(p_)) return 0; + + { + const problem_dft *p = (const problem_dft *) p_; + + /* rank-0 problems are always OK */ + if (p->sz->rnk == 0) return 1; + + /* this solver is ok for split arrays */ + if (p->sz->rnk == 1 && + splitp(p->ri, p->ii, p->sz->dims[0].n, p->sz->dims[0].is) && + splitp(p->ro, p->io, p->sz->dims[0].n, p->sz->dims[0].os)) + return 1; + + return !(NO_DFT_R2HCP(plnr)); + } +} + +static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) +{ + P *pln; + const problem_dft *p; + plan *cld; + INT ishift = 0, oshift = 0; + + static const plan_adt padt = { + X(dft_solve), awake, print, destroy + }; + + UNUSED(ego_); + if (!applicable(p_, plnr)) + return (plan *)0; + + p = (const problem_dft *) p_; + + { + tensor *ri_vec = X(mktensor_1d)(2, p->ii - p->ri, p->io - p->ro); + tensor *cld_vec = X(tensor_append)(ri_vec, p->vecsz); + int i; + for (i = 0; i < cld_vec->rnk; ++i) { /* make all istrides > 0 */ + if (cld_vec->dims[i].is < 0) { + INT nm1 = cld_vec->dims[i].n - 1; + ishift -= nm1 * (cld_vec->dims[i].is *= -1); + oshift -= nm1 * (cld_vec->dims[i].os *= -1); + } + } + cld = X(mkplan_d)(plnr, + X(mkproblem_rdft_1)(p->sz, cld_vec, + p->ri + ishift, + p->ro + oshift, R2HC)); + X(tensor_destroy2)(ri_vec, cld_vec); + } + if (!cld) return (plan *)0; + + pln = MKPLAN_DFT(P, &padt, apply); + + if (p->sz->rnk == 0) { + pln->n = 1; + pln->os = 0; + } + else { + pln->n = p->sz->dims[0].n; + pln->os = p->sz->dims[0].os; + } + pln->ishift = ishift; + pln->oshift = oshift; + + pln->cld = cld; + + pln->super.super.ops = cld->ops; + pln->super.super.ops.other += 8 * ((pln->n - 1)/2); + pln->super.super.ops.add += 4 * ((pln->n - 1)/2); + pln->super.super.ops.other += 1; /* estimator hack for nop plans */ + + return &(pln->super.super); +} + +/* constructor */ +static solver *mksolver(void) +{ + static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; + S *slv = MKSOLVER(S, &sadt); + return &(slv->super); +} + +void X(dft_r2hc_register)(planner *p) +{ + REGISTER_SOLVER(p, mksolver()); +}