diff src/fftw-3.3.3/mpi/transpose-recurse.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/mpi/transpose-recurse.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,300 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* Recursive "radix-r" distributed transpose, which breaks a transpose
+   over p processes into p/r transposes over r processes plus r
+   transposes over p/r processes.  If performed recursively, this
+   produces a total of O(p log p) messages vs. O(p^2) messages for a
+   direct approach.
+
+   However, this is not necessarily an improvement.  The total size of
+   all the messages is actually increased from O(N) to O(N log p)
+   where N is the total data size.  Also, the amount of local data
+   rearrangement is increased.  So, it's not clear, a priori, what the
+   best algorithm will be, and we'll leave it to the planner.  (In
+   theory and practice, it looks like this becomes advantageous for
+   large p, in the limit where the message sizes are small and
+   latency-dominated.)
+*/
+
+#include "mpi-transpose.h"
+#include <string.h>
+
+typedef struct {
+     solver super;
+     int (*radix)(int np);
+     const char *nam;
+     int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
+} S;
+
+typedef struct {
+     plan_mpi_transpose super;
+
+     plan *cld1, *cldtr, *cldtm;
+     int preserve_input;
+
+     int r; /* "radix" */
+     const char *nam;
+} P;
+
+static void apply(const plan *ego_, R *I, R *O)
+{
+     const P *ego = (const P *) ego_;
+     plan_rdft *cld1, *cldtr, *cldtm;
+
+     cld1 = (plan_rdft *) ego->cld1;
+     if (cld1) cld1->apply((plan *) cld1, I, O);
+
+     if (ego->preserve_input) I = O;
+
+     cldtr = (plan_rdft *) ego->cldtr;
+     if (cldtr) cldtr->apply((plan *) cldtr, O, I);
+
+     cldtm = (plan_rdft *) ego->cldtm;
+     if (cldtm) cldtm->apply((plan *) cldtm, I, O);
+}
+
+static int radix_sqrt(int np)
+{
+     int r;
+     for (r = (int) (X(isqrt)(np)); np % r != 0; ++r)
+	  ;
+     return r;
+}
+
+static int radix_first(int np)
+{
+     int r = (int) (X(first_divisor)(np));
+     return (r >= (int) (X(isqrt)(np)) ? 0 : r);
+}
+
+/* the local allocated space on process pe required for the given transpose
+   dimensions and block sizes */
+static INT transpose_space(INT nx, INT ny, INT block, INT tblock, int pe)
+{
+     return X(imax)(XM(block)(nx, block, pe) * ny,
+		    nx * XM(block)(ny, tblock, pe));
+}
+
+/* check whether the recursive transposes fit within the space
+   that must have been allocated on each process for this transpose;
+   this must be modified if the subdivision in mkplan is changed! */
+static int enough_space(INT nx, INT ny, INT block, INT tblock,
+			int r, int n_pes)
+{
+     int pe;
+     int m = n_pes / r;
+     for (pe = 0; pe < n_pes; ++pe) {
+	  INT space = transpose_space(nx, ny, block, tblock, pe);
+	  INT b1 = XM(block)(nx, r * block, pe / r);
+	  INT b2 = XM(block)(ny, m * tblock, pe % r);
+	  if (transpose_space(b1, ny, block, m*tblock, pe % r) > space
+	      || transpose_space(nx, b2, r*block, tblock, pe / r) > space)
+	       return 0;
+     }
+     return 1;
+}
+
+/* In theory, transpose-recurse becomes advantageous for message sizes
+   below some minimum, assuming that the time is dominated by
+   communications.  In practice, we want to constrain the minimum
+   message size for transpose-recurse to keep the planning time down.
+   I've set this conservatively according to some simple experiments
+   on a Cray XT3 where the crossover message size was 128, although on
+   a larger-latency machine the crossover will be larger. */
+#define SMALL_MESSAGE 2048
+
+static int applicable(const S *ego, const problem *p_,
+		      const planner *plnr, int *r)
+{
+     const problem_mpi_transpose *p = (const problem_mpi_transpose *) p_;
+     int n_pes;
+     MPI_Comm_size(p->comm, &n_pes);
+     return (1
+	     && p->tblock * n_pes == p->ny
+	     && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
+                                          && p->I != p->O))
+	     && (*r = ego->radix(n_pes)) && *r < n_pes && *r > 1
+	     && enough_space(p->nx, p->ny, p->block, p->tblock, *r, n_pes)
+	     && (!CONSERVE_MEMORYP(plnr) || *r > 8
+		 || !X(toobig)((p->nx * (p->ny / n_pes) * p->vn) / *r))
+	     && (!NO_SLOWP(plnr) || 
+		 (p->nx * (p->ny / n_pes) * p->vn) / n_pes <= SMALL_MESSAGE)
+	     && ONLY_TRANSPOSEDP(p->flags)
+	  );
+}
+
+static void awake(plan *ego_, enum wakefulness wakefulness)
+{
+     P *ego = (P *) ego_;
+     X(plan_awake)(ego->cld1, wakefulness);
+     X(plan_awake)(ego->cldtr, wakefulness);
+     X(plan_awake)(ego->cldtm, wakefulness);
+}
+
+static void destroy(plan *ego_)
+{
+     P *ego = (P *) ego_;
+     X(plan_destroy_internal)(ego->cldtm);
+     X(plan_destroy_internal)(ego->cldtr);
+     X(plan_destroy_internal)(ego->cld1);
+}
+
+static void print(const plan *ego_, printer *p)
+{
+     const P *ego = (const P *) ego_;
+     p->print(p, "(mpi-transpose-recurse/%s/%d%s%(%p%)%(%p%)%(%p%))",
+	      ego->nam, ego->r, ego->preserve_input==2 ?"/p":"",
+	      ego->cld1, ego->cldtr, ego->cldtm);
+}
+
+static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
+{
+     const S *ego = (const S *) ego_;
+     const problem_mpi_transpose *p;
+     P *pln;
+     plan *cld1 = 0, *cldtr = 0, *cldtm = 0;
+     R *I, *O;
+     int me, np, r, m;
+     INT b;
+     MPI_Comm comm2;
+     static const plan_adt padt = {
+          XM(transpose_solve), awake, print, destroy
+     };
+
+     UNUSED(ego);
+
+     if (!applicable(ego, p_, plnr, &r))
+          return (plan *) 0;
+
+     p = (const problem_mpi_transpose *) p_;
+
+     MPI_Comm_size(p->comm, &np);
+     MPI_Comm_rank(p->comm, &me);
+     m = np / r;
+     A(r * m == np);
+
+     I = p->I; O = p->O;
+
+     b = XM(block)(p->nx, p->block, me);
+     A(p->tblock * np == p->ny); /* this is currently required for cld1 */
+     if (p->flags & TRANSPOSED_IN) { 
+          /* m x r x (bt x b x vn) -> r x m x (bt x b x vn) */
+	  INT vn = p->vn * b * p->tblock;
+	  cld1 = X(mkplan_f_d)(plnr,
+                               X(mkproblem_rdft_0_d)(X(mktensor_3d)
+						     (m, r*vn, vn,
+						      r, vn, m*vn,
+						      vn, 1, 1),
+                                                     I, O),
+                               0, 0, NO_SLOW);
+     }
+     else if (I != O) { /* combine cld1 with TRANSPOSED_IN permutation */
+          /* b x m x r x bt x vn -> r x m x bt x b x vn */
+	  INT vn = p->vn;
+	  INT bt = p->tblock;
+	  cld1 = X(mkplan_f_d)(plnr,
+                               X(mkproblem_rdft_0_d)(X(mktensor_5d)
+						     (b, m*r*bt*vn, vn,
+						      m, r*bt*vn, bt*b*vn,
+						      r, bt*vn, m*bt*b*vn,
+						      bt, vn, b*vn,
+						      vn, 1, 1),
+                                                     I, O),
+                               0, 0, NO_SLOW);
+     }
+     else { /* TRANSPOSED_IN permutation must be separate for in-place */
+	  /* b x (m x r) x bt x vn -> b x (r x m) x bt x vn */
+	  INT vn = p->vn * p->tblock;
+	  cld1 = X(mkplan_f_d)(plnr,
+                               X(mkproblem_rdft_0_d)(X(mktensor_4d)
+						     (m, r*vn, vn,
+						      r, vn, m*vn,
+						      vn, 1, 1,
+						      b, np*vn, np*vn),
+                                                     I, O),
+                               0, 0, NO_SLOW);
+     }
+     if (XM(any_true)(!cld1, p->comm)) goto nada;
+
+     if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) I = O;
+
+     b = XM(block)(p->nx, r * p->block, me / r);
+     MPI_Comm_split(p->comm, me / r, me, &comm2);
+     if (b)
+	  cldtr = X(mkplan_d)(plnr, XM(mkproblem_transpose)
+			      (b, p->ny, p->vn,
+			       O, I, p->block, m * p->tblock, comm2, 
+			       p->I != p->O
+			       ? TRANSPOSED_IN : (p->flags & TRANSPOSED_IN)));
+     MPI_Comm_free(&comm2);
+     if (XM(any_true)(b && !cldtr, p->comm)) goto nada;
+     
+     b = XM(block)(p->ny, m * p->tblock, me % r);
+     MPI_Comm_split(p->comm, me % r, me, &comm2);
+     if (b)
+	  cldtm = X(mkplan_d)(plnr, XM(mkproblem_transpose)
+			      (p->nx, b, p->vn,
+			       I, O, r * p->block, p->tblock, comm2, 
+			       TRANSPOSED_IN | (p->flags & TRANSPOSED_OUT)));
+     MPI_Comm_free(&comm2);
+     if (XM(any_true)(b && !cldtm, p->comm)) goto nada;
+
+     pln = MKPLAN_MPI_TRANSPOSE(P, &padt, apply);
+
+     pln->cld1 = cld1;
+     pln->cldtr = cldtr;
+     pln->cldtm = cldtm;
+     pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
+     pln->r = r;
+     pln->nam = ego->nam;
+
+     pln->super.super.ops = cld1->ops;
+     if (cldtr) X(ops_add2)(&cldtr->ops, &pln->super.super.ops);
+     if (cldtm) X(ops_add2)(&cldtm->ops, &pln->super.super.ops);
+
+     return &(pln->super.super);
+
+ nada:
+     X(plan_destroy_internal)(cldtm);
+     X(plan_destroy_internal)(cldtr);
+     X(plan_destroy_internal)(cld1);
+     return (plan *) 0;
+}
+
+static solver *mksolver(int preserve_input,
+			int (*radix)(int np), const char *nam)
+{
+     static const solver_adt sadt = { PROBLEM_MPI_TRANSPOSE, mkplan, 0 };
+     S *slv = MKSOLVER(S, &sadt);
+     slv->preserve_input = preserve_input;
+     slv->radix = radix;
+     slv->nam = nam;
+     return &(slv->super);
+}
+
+void XM(transpose_recurse_register)(planner *p)
+{
+     int preserve_input;
+     for (preserve_input = 0; preserve_input <= 1; ++preserve_input) {
+	  REGISTER_SOLVER(p, mksolver(preserve_input, radix_sqrt, "sqrt"));
+	  REGISTER_SOLVER(p, mksolver(preserve_input, radix_first, "first"));
+     }
+}