Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/mpi/transpose-recurse.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/mpi/transpose-recurse.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,300 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* Recursive "radix-r" distributed transpose, which breaks a transpose + over p processes into p/r transposes over r processes plus r + transposes over p/r processes. If performed recursively, this + produces a total of O(p log p) messages vs. O(p^2) messages for a + direct approach. + + However, this is not necessarily an improvement. The total size of + all the messages is actually increased from O(N) to O(N log p) + where N is the total data size. Also, the amount of local data + rearrangement is increased. So, it's not clear, a priori, what the + best algorithm will be, and we'll leave it to the planner. (In + theory and practice, it looks like this becomes advantageous for + large p, in the limit where the message sizes are small and + latency-dominated.) +*/ + +#include "mpi-transpose.h" +#include <string.h> + +typedef struct { + solver super; + int (*radix)(int np); + const char *nam; + int preserve_input; /* preserve input even if DESTROY_INPUT was passed */ +} S; + +typedef struct { + plan_mpi_transpose super; + + plan *cld1, *cldtr, *cldtm; + int preserve_input; + + int r; /* "radix" */ + const char *nam; +} P; + +static void apply(const plan *ego_, R *I, R *O) +{ + const P *ego = (const P *) ego_; + plan_rdft *cld1, *cldtr, *cldtm; + + cld1 = (plan_rdft *) ego->cld1; + if (cld1) cld1->apply((plan *) cld1, I, O); + + if (ego->preserve_input) I = O; + + cldtr = (plan_rdft *) ego->cldtr; + if (cldtr) cldtr->apply((plan *) cldtr, O, I); + + cldtm = (plan_rdft *) ego->cldtm; + if (cldtm) cldtm->apply((plan *) cldtm, I, O); +} + +static int radix_sqrt(int np) +{ + int r; + for (r = (int) (X(isqrt)(np)); np % r != 0; ++r) + ; + return r; +} + +static int radix_first(int np) +{ + int r = (int) (X(first_divisor)(np)); + return (r >= (int) (X(isqrt)(np)) ? 0 : r); +} + +/* the local allocated space on process pe required for the given transpose + dimensions and block sizes */ +static INT transpose_space(INT nx, INT ny, INT block, INT tblock, int pe) +{ + return X(imax)(XM(block)(nx, block, pe) * ny, + nx * XM(block)(ny, tblock, pe)); +} + +/* check whether the recursive transposes fit within the space + that must have been allocated on each process for this transpose; + this must be modified if the subdivision in mkplan is changed! */ +static int enough_space(INT nx, INT ny, INT block, INT tblock, + int r, int n_pes) +{ + int pe; + int m = n_pes / r; + for (pe = 0; pe < n_pes; ++pe) { + INT space = transpose_space(nx, ny, block, tblock, pe); + INT b1 = XM(block)(nx, r * block, pe / r); + INT b2 = XM(block)(ny, m * tblock, pe % r); + if (transpose_space(b1, ny, block, m*tblock, pe % r) > space + || transpose_space(nx, b2, r*block, tblock, pe / r) > space) + return 0; + } + return 1; +} + +/* In theory, transpose-recurse becomes advantageous for message sizes + below some minimum, assuming that the time is dominated by + communications. In practice, we want to constrain the minimum + message size for transpose-recurse to keep the planning time down. + I've set this conservatively according to some simple experiments + on a Cray XT3 where the crossover message size was 128, although on + a larger-latency machine the crossover will be larger. */ +#define SMALL_MESSAGE 2048 + +static int applicable(const S *ego, const problem *p_, + const planner *plnr, int *r) +{ + const problem_mpi_transpose *p = (const problem_mpi_transpose *) p_; + int n_pes; + MPI_Comm_size(p->comm, &n_pes); + return (1 + && p->tblock * n_pes == p->ny + && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr) + && p->I != p->O)) + && (*r = ego->radix(n_pes)) && *r < n_pes && *r > 1 + && enough_space(p->nx, p->ny, p->block, p->tblock, *r, n_pes) + && (!CONSERVE_MEMORYP(plnr) || *r > 8 + || !X(toobig)((p->nx * (p->ny / n_pes) * p->vn) / *r)) + && (!NO_SLOWP(plnr) || + (p->nx * (p->ny / n_pes) * p->vn) / n_pes <= SMALL_MESSAGE) + && ONLY_TRANSPOSEDP(p->flags) + ); +} + +static void awake(plan *ego_, enum wakefulness wakefulness) +{ + P *ego = (P *) ego_; + X(plan_awake)(ego->cld1, wakefulness); + X(plan_awake)(ego->cldtr, wakefulness); + X(plan_awake)(ego->cldtm, wakefulness); +} + +static void destroy(plan *ego_) +{ + P *ego = (P *) ego_; + X(plan_destroy_internal)(ego->cldtm); + X(plan_destroy_internal)(ego->cldtr); + X(plan_destroy_internal)(ego->cld1); +} + +static void print(const plan *ego_, printer *p) +{ + const P *ego = (const P *) ego_; + p->print(p, "(mpi-transpose-recurse/%s/%d%s%(%p%)%(%p%)%(%p%))", + ego->nam, ego->r, ego->preserve_input==2 ?"/p":"", + ego->cld1, ego->cldtr, ego->cldtm); +} + +static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) +{ + const S *ego = (const S *) ego_; + const problem_mpi_transpose *p; + P *pln; + plan *cld1 = 0, *cldtr = 0, *cldtm = 0; + R *I, *O; + int me, np, r, m; + INT b; + MPI_Comm comm2; + static const plan_adt padt = { + XM(transpose_solve), awake, print, destroy + }; + + UNUSED(ego); + + if (!applicable(ego, p_, plnr, &r)) + return (plan *) 0; + + p = (const problem_mpi_transpose *) p_; + + MPI_Comm_size(p->comm, &np); + MPI_Comm_rank(p->comm, &me); + m = np / r; + A(r * m == np); + + I = p->I; O = p->O; + + b = XM(block)(p->nx, p->block, me); + A(p->tblock * np == p->ny); /* this is currently required for cld1 */ + if (p->flags & TRANSPOSED_IN) { + /* m x r x (bt x b x vn) -> r x m x (bt x b x vn) */ + INT vn = p->vn * b * p->tblock; + cld1 = X(mkplan_f_d)(plnr, + X(mkproblem_rdft_0_d)(X(mktensor_3d) + (m, r*vn, vn, + r, vn, m*vn, + vn, 1, 1), + I, O), + 0, 0, NO_SLOW); + } + else if (I != O) { /* combine cld1 with TRANSPOSED_IN permutation */ + /* b x m x r x bt x vn -> r x m x bt x b x vn */ + INT vn = p->vn; + INT bt = p->tblock; + cld1 = X(mkplan_f_d)(plnr, + X(mkproblem_rdft_0_d)(X(mktensor_5d) + (b, m*r*bt*vn, vn, + m, r*bt*vn, bt*b*vn, + r, bt*vn, m*bt*b*vn, + bt, vn, b*vn, + vn, 1, 1), + I, O), + 0, 0, NO_SLOW); + } + else { /* TRANSPOSED_IN permutation must be separate for in-place */ + /* b x (m x r) x bt x vn -> b x (r x m) x bt x vn */ + INT vn = p->vn * p->tblock; + cld1 = X(mkplan_f_d)(plnr, + X(mkproblem_rdft_0_d)(X(mktensor_4d) + (m, r*vn, vn, + r, vn, m*vn, + vn, 1, 1, + b, np*vn, np*vn), + I, O), + 0, 0, NO_SLOW); + } + if (XM(any_true)(!cld1, p->comm)) goto nada; + + if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) I = O; + + b = XM(block)(p->nx, r * p->block, me / r); + MPI_Comm_split(p->comm, me / r, me, &comm2); + if (b) + cldtr = X(mkplan_d)(plnr, XM(mkproblem_transpose) + (b, p->ny, p->vn, + O, I, p->block, m * p->tblock, comm2, + p->I != p->O + ? TRANSPOSED_IN : (p->flags & TRANSPOSED_IN))); + MPI_Comm_free(&comm2); + if (XM(any_true)(b && !cldtr, p->comm)) goto nada; + + b = XM(block)(p->ny, m * p->tblock, me % r); + MPI_Comm_split(p->comm, me % r, me, &comm2); + if (b) + cldtm = X(mkplan_d)(plnr, XM(mkproblem_transpose) + (p->nx, b, p->vn, + I, O, r * p->block, p->tblock, comm2, + TRANSPOSED_IN | (p->flags & TRANSPOSED_OUT))); + MPI_Comm_free(&comm2); + if (XM(any_true)(b && !cldtm, p->comm)) goto nada; + + pln = MKPLAN_MPI_TRANSPOSE(P, &padt, apply); + + pln->cld1 = cld1; + pln->cldtr = cldtr; + pln->cldtm = cldtm; + pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr); + pln->r = r; + pln->nam = ego->nam; + + pln->super.super.ops = cld1->ops; + if (cldtr) X(ops_add2)(&cldtr->ops, &pln->super.super.ops); + if (cldtm) X(ops_add2)(&cldtm->ops, &pln->super.super.ops); + + return &(pln->super.super); + + nada: + X(plan_destroy_internal)(cldtm); + X(plan_destroy_internal)(cldtr); + X(plan_destroy_internal)(cld1); + return (plan *) 0; +} + +static solver *mksolver(int preserve_input, + int (*radix)(int np), const char *nam) +{ + static const solver_adt sadt = { PROBLEM_MPI_TRANSPOSE, mkplan, 0 }; + S *slv = MKSOLVER(S, &sadt); + slv->preserve_input = preserve_input; + slv->radix = radix; + slv->nam = nam; + return &(slv->super); +} + +void XM(transpose_recurse_register)(planner *p) +{ + int preserve_input; + for (preserve_input = 0; preserve_input <= 1; ++preserve_input) { + REGISTER_SOLVER(p, mksolver(preserve_input, radix_sqrt, "sqrt")); + REGISTER_SOLVER(p, mksolver(preserve_input, radix_first, "first")); + } +}