Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/mpi/transpose-pairwise.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/mpi/transpose-pairwise.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,486 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* Distributed transposes using a sequence of carefully scheduled + pairwise exchanges. This has the advantage that it can be done + in-place, or out-of-place while preserving the input, using buffer + space proportional to the local size divided by the number of + processes (i.e. to the total array size divided by the number of + processes squared). */ + +#include "mpi-transpose.h" +#include <string.h> + +typedef struct { + solver super; + int preserve_input; /* preserve input even if DESTROY_INPUT was passed */ +} S; + +typedef struct { + plan_mpi_transpose super; + + plan *cld1, *cld2, *cld2rest, *cld3; + INT rest_Ioff, rest_Ooff; + + int n_pes, my_pe, *sched; + INT *send_block_sizes, *send_block_offsets; + INT *recv_block_sizes, *recv_block_offsets; + MPI_Comm comm; + int preserve_input; +} P; + +static void transpose_chunks(int *sched, int n_pes, int my_pe, + INT *sbs, INT *sbo, INT *rbs, INT *rbo, + MPI_Comm comm, + R *I, R *O) +{ + if (sched) { + int i; + MPI_Status status; + + /* TODO: explore non-synchronous send/recv? */ + + if (I == O) { + R *buf = (R*) MALLOC(sizeof(R) * sbs[0], BUFFERS); + + for (i = 0; i < n_pes; ++i) { + int pe = sched[i]; + if (my_pe == pe) { + if (rbo[pe] != sbo[pe]) + memmove(O + rbo[pe], O + sbo[pe], + sbs[pe] * sizeof(R)); + } + else { + memcpy(buf, O + sbo[pe], sbs[pe] * sizeof(R)); + MPI_Sendrecv(buf, (int) (sbs[pe]), FFTW_MPI_TYPE, + pe, (my_pe * n_pes + pe) & 0xffff, + O + rbo[pe], (int) (rbs[pe]), + FFTW_MPI_TYPE, + pe, (pe * n_pes + my_pe) & 0xffff, + comm, &status); + } + } + + X(ifree)(buf); + } + else { /* I != O */ + for (i = 0; i < n_pes; ++i) { + int pe = sched[i]; + if (my_pe == pe) + memcpy(O + rbo[pe], I + sbo[pe], sbs[pe] * sizeof(R)); + else + MPI_Sendrecv(I + sbo[pe], (int) (sbs[pe]), + FFTW_MPI_TYPE, + pe, (my_pe * n_pes + pe) & 0xffff, + O + rbo[pe], (int) (rbs[pe]), + FFTW_MPI_TYPE, + pe, (pe * n_pes + my_pe) & 0xffff, + comm, &status); + } + } + } +} + +static void apply(const plan *ego_, R *I, R *O) +{ + const P *ego = (const P *) ego_; + plan_rdft *cld1, *cld2, *cld2rest, *cld3; + + /* transpose locally to get contiguous chunks */ + cld1 = (plan_rdft *) ego->cld1; + if (cld1) { + cld1->apply(ego->cld1, I, O); + + if (ego->preserve_input) I = O; + + /* transpose chunks globally */ + transpose_chunks(ego->sched, ego->n_pes, ego->my_pe, + ego->send_block_sizes, ego->send_block_offsets, + ego->recv_block_sizes, ego->recv_block_offsets, + ego->comm, O, I); + } + else if (ego->preserve_input) { + /* transpose chunks globally */ + transpose_chunks(ego->sched, ego->n_pes, ego->my_pe, + ego->send_block_sizes, ego->send_block_offsets, + ego->recv_block_sizes, ego->recv_block_offsets, + ego->comm, I, O); + + I = O; + } + else { + /* transpose chunks globally */ + transpose_chunks(ego->sched, ego->n_pes, ego->my_pe, + ego->send_block_sizes, ego->send_block_offsets, + ego->recv_block_sizes, ego->recv_block_offsets, + ego->comm, I, I); + } + + /* transpose locally, again, to get ordinary row-major; + this may take two transposes if the block sizes are unequal + (3 subplans, two of which operate on disjoint data) */ + cld2 = (plan_rdft *) ego->cld2; + cld2->apply(ego->cld2, I, O); + cld2rest = (plan_rdft *) ego->cld2rest; + if (cld2rest) { + cld2rest->apply(ego->cld2rest, + I + ego->rest_Ioff, O + ego->rest_Ooff); + cld3 = (plan_rdft *) ego->cld3; + if (cld3) + cld3->apply(ego->cld3, O, O); + /* else TRANSPOSED_OUT is true and user wants O transposed */ + } +} + +static int applicable(const S *ego, const problem *p_, + const planner *plnr) +{ + const problem_mpi_transpose *p = (const problem_mpi_transpose *) p_; + /* Note: this is *not* UGLY for out-of-place, destroy-input plans; + the planner often prefers transpose-pairwise to transpose-alltoall, + at least with LAM MPI on my machine. */ + return (1 + && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr) + && p->I != p->O)) + && ONLY_TRANSPOSEDP(p->flags)); +} + +static void awake(plan *ego_, enum wakefulness wakefulness) +{ + P *ego = (P *) ego_; + X(plan_awake)(ego->cld1, wakefulness); + X(plan_awake)(ego->cld2, wakefulness); + X(plan_awake)(ego->cld2rest, wakefulness); + X(plan_awake)(ego->cld3, wakefulness); +} + +static void destroy(plan *ego_) +{ + P *ego = (P *) ego_; + X(ifree0)(ego->sched); + X(ifree0)(ego->send_block_sizes); + MPI_Comm_free(&ego->comm); + X(plan_destroy_internal)(ego->cld3); + X(plan_destroy_internal)(ego->cld2rest); + X(plan_destroy_internal)(ego->cld2); + X(plan_destroy_internal)(ego->cld1); +} + +static void print(const plan *ego_, printer *p) +{ + const P *ego = (const P *) ego_; + p->print(p, "(mpi-transpose-pairwise%s%(%p%)%(%p%)%(%p%)%(%p%))", + ego->preserve_input==2 ?"/p":"", + ego->cld1, ego->cld2, ego->cld2rest, ego->cld3); +} + +/* Given a process which_pe and a number of processes npes, fills + the array sched[npes] with a sequence of processes to communicate + with for a deadlock-free, optimum-overlap all-to-all communication. + (All processes must call this routine to get their own schedules.) + The schedule can be re-ordered arbitrarily as long as all processes + apply the same permutation to their schedules. + + The algorithm here is based upon the one described in: + J. A. M. Schreuder, "Constructing timetables for sport + competitions," Mathematical Programming Study 13, pp. 58-67 (1980). + In a sport competition, you have N teams and want every team to + play every other team in as short a time as possible (maximum overlap + between games). This timetabling problem is therefore identical + to that of an all-to-all communications problem. In our case, there + is one wrinkle: as part of the schedule, the process must do + some data transfer with itself (local data movement), analogous + to a requirement that each team "play itself" in addition to other + teams. With this wrinkle, it turns out that an optimal timetable + (N parallel games) can be constructed for any N, not just for even + N as in the original problem described by Schreuder. +*/ +static void fill1_comm_sched(int *sched, int which_pe, int npes) +{ + int pe, i, n, s = 0; + A(which_pe >= 0 && which_pe < npes); + if (npes % 2 == 0) { + n = npes; + sched[s++] = which_pe; + } + else + n = npes + 1; + for (pe = 0; pe < n - 1; ++pe) { + if (npes % 2 == 0) { + if (pe == which_pe) sched[s++] = npes - 1; + else if (npes - 1 == which_pe) sched[s++] = pe; + } + else if (pe == which_pe) sched[s++] = pe; + + if (pe != which_pe && which_pe < n - 1) { + i = (pe - which_pe + (n - 1)) % (n - 1); + if (i < n/2) + sched[s++] = (pe + i) % (n - 1); + + i = (which_pe - pe + (n - 1)) % (n - 1); + if (i < n/2) + sched[s++] = (pe - i + (n - 1)) % (n - 1); + } + } + A(s == npes); +} + +/* Sort the communication schedule sched for npes so that the schedule + on process sortpe is ascending or descending (!ascending). This is + necessary to allow in-place transposes when the problem does not + divide equally among the processes. In this case there is one + process where the incoming blocks are bigger/smaller than the + outgoing blocks and thus have to be received in + descending/ascending order, respectively, to avoid overwriting data + before it is sent. */ +static void sort1_comm_sched(int *sched, int npes, int sortpe, int ascending) +{ + int *sortsched, i; + sortsched = (int *) MALLOC(npes * sizeof(int) * 2, OTHER); + fill1_comm_sched(sortsched, sortpe, npes); + if (ascending) + for (i = 0; i < npes; ++i) + sortsched[npes + sortsched[i]] = sched[i]; + else + for (i = 0; i < npes; ++i) + sortsched[2*npes - 1 - sortsched[i]] = sched[i]; + for (i = 0; i < npes; ++i) + sched[i] = sortsched[npes + i]; + X(ifree)(sortsched); +} + +/* make the plans to do the post-MPI transpositions (shared with + transpose-alltoall) */ +int XM(mkplans_posttranspose)(const problem_mpi_transpose *p, planner *plnr, + R *I, R *O, int my_pe, + plan **cld2, plan **cld2rest, plan **cld3, + INT *rest_Ioff, INT *rest_Ooff) +{ + INT vn = p->vn; + INT b = p->block; + INT bt = XM(block)(p->ny, p->tblock, my_pe); + INT nxb = p->nx / b; /* number of equal-sized blocks */ + INT nxr = p->nx - nxb * b; /* leftover rows after equal blocks */ + + *cld2 = *cld2rest = *cld3 = NULL; + *rest_Ioff = *rest_Ooff = 0; + + if (!(p->flags & TRANSPOSED_OUT) && (nxr == 0 || I != O)) { + INT nx = p->nx * vn; + b *= vn; + *cld2 = X(mkplan_f_d)(plnr, + X(mkproblem_rdft_0_d)(X(mktensor_3d) + (nxb, bt * b, b, + bt, b, nx, + b, 1, 1), + I, O), + 0, 0, NO_SLOW); + if (!*cld2) goto nada; + + if (nxr > 0) { + *rest_Ioff = nxb * bt * b; + *rest_Ooff = nxb * b; + b = nxr * vn; + *cld2rest = X(mkplan_f_d)(plnr, + X(mkproblem_rdft_0_d)(X(mktensor_2d) + (bt, b, nx, + b, 1, 1), + I + *rest_Ioff, + O + *rest_Ooff), + 0, 0, NO_SLOW); + if (!*cld2rest) goto nada; + } + } + else { + *cld2 = X(mkplan_f_d)(plnr, + X(mkproblem_rdft_0_d)( + X(mktensor_4d) + (nxb, bt * b * vn, bt * b * vn, + bt, b * vn, vn, + b, vn, bt * vn, + vn, 1, 1), + I, O), + 0, 0, NO_SLOW); + if (!*cld2) goto nada; + + *rest_Ioff = *rest_Ooff = nxb * bt * b * vn; + *cld2rest = X(mkplan_f_d)(plnr, + X(mkproblem_rdft_0_d)( + X(mktensor_3d) + (bt, nxr * vn, vn, + nxr, vn, bt * vn, + vn, 1, 1), + I + *rest_Ioff, O + *rest_Ooff), + 0, 0, NO_SLOW); + if (!*cld2rest) goto nada; + + if (!(p->flags & TRANSPOSED_OUT)) { + *cld3 = X(mkplan_f_d)(plnr, + X(mkproblem_rdft_0_d)( + X(mktensor_3d) + (p->nx, bt * vn, vn, + bt, vn, p->nx * vn, + vn, 1, 1), + O, O), + 0, 0, NO_SLOW); + if (!*cld3) goto nada; + } + } + + return 1; + +nada: + X(plan_destroy_internal)(*cld3); + X(plan_destroy_internal)(*cld2rest); + X(plan_destroy_internal)(*cld2); + return 0; +} + +static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) +{ + const S *ego = (const S *) ego_; + const problem_mpi_transpose *p; + P *pln; + plan *cld1 = 0, *cld2 = 0, *cld2rest = 0, *cld3 = 0; + INT b, bt, vn, rest_Ioff, rest_Ooff; + INT *sbs, *sbo, *rbs, *rbo; + int pe, my_pe, n_pes, sort_pe = -1, ascending = 1; + R *I, *O; + static const plan_adt padt = { + XM(transpose_solve), awake, print, destroy + }; + + UNUSED(ego); + + if (!applicable(ego, p_, plnr)) + return (plan *) 0; + + p = (const problem_mpi_transpose *) p_; + vn = p->vn; + I = p->I; O = p->O; + + MPI_Comm_rank(p->comm, &my_pe); + MPI_Comm_size(p->comm, &n_pes); + + b = XM(block)(p->nx, p->block, my_pe); + + if (!(p->flags & TRANSPOSED_IN)) { /* b x ny x vn -> ny x b x vn */ + cld1 = X(mkplan_f_d)(plnr, + X(mkproblem_rdft_0_d)(X(mktensor_3d) + (b, p->ny * vn, vn, + p->ny, vn, b * vn, + vn, 1, 1), + I, O), + 0, 0, NO_SLOW); + if (XM(any_true)(!cld1, p->comm)) goto nada; + } + if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) I = O; + + if (XM(any_true)(!XM(mkplans_posttranspose)(p, plnr, I, O, my_pe, + &cld2, &cld2rest, &cld3, + &rest_Ioff, &rest_Ooff), + p->comm)) goto nada; + + pln = MKPLAN_MPI_TRANSPOSE(P, &padt, apply); + + pln->cld1 = cld1; + pln->cld2 = cld2; + pln->cld2rest = cld2rest; + pln->rest_Ioff = rest_Ioff; + pln->rest_Ooff = rest_Ooff; + pln->cld3 = cld3; + pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr); + + MPI_Comm_dup(p->comm, &pln->comm); + + n_pes = (int) X(imax)(XM(num_blocks)(p->nx, p->block), + XM(num_blocks)(p->ny, p->tblock)); + + /* Compute sizes/offsets of blocks to exchange between processors */ + sbs = (INT *) MALLOC(4 * n_pes * sizeof(INT), PLANS); + sbo = sbs + n_pes; + rbs = sbo + n_pes; + rbo = rbs + n_pes; + b = XM(block)(p->nx, p->block, my_pe); + bt = XM(block)(p->ny, p->tblock, my_pe); + for (pe = 0; pe < n_pes; ++pe) { + INT db, dbt; /* destination block sizes */ + db = XM(block)(p->nx, p->block, pe); + dbt = XM(block)(p->ny, p->tblock, pe); + + sbs[pe] = b * dbt * vn; + sbo[pe] = pe * (b * p->tblock) * vn; + rbs[pe] = db * bt * vn; + rbo[pe] = pe * (p->block * bt) * vn; + + if (db * dbt > 0 && db * p->tblock != p->block * dbt) { + A(sort_pe == -1); /* only one process should need sorting */ + sort_pe = pe; + ascending = db * p->tblock > p->block * dbt; + } + } + pln->n_pes = n_pes; + pln->my_pe = my_pe; + pln->send_block_sizes = sbs; + pln->send_block_offsets = sbo; + pln->recv_block_sizes = rbs; + pln->recv_block_offsets = rbo; + + if (my_pe >= n_pes) { + pln->sched = 0; /* this process is not doing anything */ + } + else { + pln->sched = (int *) MALLOC(n_pes * sizeof(int), PLANS); + fill1_comm_sched(pln->sched, my_pe, n_pes); + if (sort_pe >= 0) + sort1_comm_sched(pln->sched, n_pes, sort_pe, ascending); + } + + X(ops_zero)(&pln->super.super.ops); + if (cld1) X(ops_add2)(&cld1->ops, &pln->super.super.ops); + if (cld2) X(ops_add2)(&cld2->ops, &pln->super.super.ops); + if (cld2rest) X(ops_add2)(&cld2rest->ops, &pln->super.super.ops); + if (cld3) X(ops_add2)(&cld3->ops, &pln->super.super.ops); + /* FIXME: should MPI operations be counted in "other" somehow? */ + + return &(pln->super.super); + + nada: + X(plan_destroy_internal)(cld3); + X(plan_destroy_internal)(cld2rest); + X(plan_destroy_internal)(cld2); + X(plan_destroy_internal)(cld1); + return (plan *) 0; +} + +static solver *mksolver(int preserve_input) +{ + static const solver_adt sadt = { PROBLEM_MPI_TRANSPOSE, mkplan, 0 }; + S *slv = MKSOLVER(S, &sadt); + slv->preserve_input = preserve_input; + return &(slv->super); +} + +void XM(transpose_pairwise_register)(planner *p) +{ + int preserve_input; + for (preserve_input = 0; preserve_input <= 1; ++preserve_input) + REGISTER_SOLVER(p, mksolver(preserve_input)); +}