Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/mpi/dft-rank-geq2.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/mpi/dft-rank-geq2.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,188 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* Complex DFTs of rank >= 2, for the case where we are distributed + across the first dimension only, and the output is not transposed. */ + +#include "mpi-dft.h" +#include "dft.h" + +typedef struct { + solver super; + int preserve_input; /* preserve input even if DESTROY_INPUT was passed */ +} S; + +typedef struct { + plan_mpi_dft super; + + plan *cld1, *cld2; + INT roff, ioff; + int preserve_input; +} P; + +static void apply(const plan *ego_, R *I, R *O) +{ + const P *ego = (const P *) ego_; + plan_dft *cld1; + plan_rdft *cld2; + INT roff = ego->roff, ioff = ego->ioff; + + /* DFT local dimensions */ + cld1 = (plan_dft *) ego->cld1; + if (ego->preserve_input) { + cld1->apply(ego->cld1, I+roff, I+ioff, O+roff, O+ioff); + I = O; + } + else + cld1->apply(ego->cld1, I+roff, I+ioff, I+roff, I+ioff); + + /* DFT non-local dimension (via dft-rank1-bigvec, usually): */ + cld2 = (plan_rdft *) ego->cld2; + cld2->apply(ego->cld2, I, O); +} + +static int applicable(const S *ego, const problem *p_, + const planner *plnr) +{ + const problem_mpi_dft *p = (const problem_mpi_dft *) p_; + return (1 + && p->sz->rnk > 1 + && p->flags == 0 /* TRANSPOSED/SCRAMBLED_IN/OUT not supported */ + && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr) + && p->I != p->O)) + && XM(is_local_after)(1, p->sz, IB) + && XM(is_local_after)(1, p->sz, OB) + && (!NO_SLOWP(plnr) /* slow if dft-serial is applicable */ + || !XM(dft_serial_applicable)(p)) + ); +} + +static void awake(plan *ego_, enum wakefulness wakefulness) +{ + P *ego = (P *) ego_; + X(plan_awake)(ego->cld1, wakefulness); + X(plan_awake)(ego->cld2, wakefulness); +} + +static void destroy(plan *ego_) +{ + P *ego = (P *) ego_; + X(plan_destroy_internal)(ego->cld2); + X(plan_destroy_internal)(ego->cld1); +} + +static void print(const plan *ego_, printer *p) +{ + const P *ego = (const P *) ego_; + p->print(p, "(mpi-dft-rank-geq2%s%(%p%)%(%p%))", + ego->preserve_input==2 ?"/p":"", ego->cld1, ego->cld2); +} + +static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) +{ + const S *ego = (const S *) ego_; + const problem_mpi_dft *p; + P *pln; + plan *cld1 = 0, *cld2 = 0; + R *ri, *ii, *ro, *io, *I, *O; + tensor *sz; + dtensor *sz2; + int i, my_pe, n_pes; + INT nrest; + static const plan_adt padt = { + XM(dft_solve), awake, print, destroy + }; + + UNUSED(ego); + + if (!applicable(ego, p_, plnr)) + return (plan *) 0; + + p = (const problem_mpi_dft *) p_; + + X(extract_reim)(p->sign, I = p->I, &ri, &ii); + X(extract_reim)(p->sign, O = p->O, &ro, &io); + if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) + I = O; + else { + ro = ri; + io = ii; + } + MPI_Comm_rank(p->comm, &my_pe); + MPI_Comm_size(p->comm, &n_pes); + + sz = X(mktensor)(p->sz->rnk - 1); /* tensor of last rnk-1 dimensions */ + i = p->sz->rnk - 2; A(i >= 0); + sz->dims[i].n = p->sz->dims[i+1].n; + sz->dims[i].is = sz->dims[i].os = 2 * p->vn; + for (--i; i >= 0; --i) { + sz->dims[i].n = p->sz->dims[i+1].n; + sz->dims[i].is = sz->dims[i].os = sz->dims[i+1].n * sz->dims[i+1].is; + } + nrest = X(tensor_sz)(sz); + { + INT is = sz->dims[0].n * sz->dims[0].is; + INT b = XM(block)(p->sz->dims[0].n, p->sz->dims[0].b[IB], my_pe); + cld1 = X(mkplan_d)(plnr, + X(mkproblem_dft_d)(sz, + X(mktensor_2d)(b, is, is, + p->vn, 2, 2), + ri, ii, ro, io)); + if (XM(any_true)(!cld1, p->comm)) goto nada; + } + + sz2 = XM(mkdtensor)(1); /* tensor for first (distributed) dimension */ + sz2->dims[0] = p->sz->dims[0]; + cld2 = X(mkplan_d)(plnr, XM(mkproblem_dft_d)(sz2, nrest * p->vn, + I, O, p->comm, p->sign, + RANK1_BIGVEC_ONLY)); + if (XM(any_true)(!cld2, p->comm)) goto nada; + + pln = MKPLAN_MPI_DFT(P, &padt, apply); + pln->cld1 = cld1; + pln->cld2 = cld2; + pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr); + pln->roff = ri - p->I; + pln->ioff = ii - p->I; + + X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops); + + return &(pln->super.super); + + nada: + X(plan_destroy_internal)(cld2); + X(plan_destroy_internal)(cld1); + return (plan *) 0; +} + +static solver *mksolver(int preserve_input) +{ + static const solver_adt sadt = { PROBLEM_MPI_DFT, mkplan, 0 }; + S *slv = MKSOLVER(S, &sadt); + slv->preserve_input = preserve_input; + return &(slv->super); +} + +void XM(dft_rank_geq2_register)(planner *p) +{ + int preserve_input; + for (preserve_input = 0; preserve_input <= 1; ++preserve_input) + REGISTER_SOLVER(p, mksolver(preserve_input)); +}