Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/mpi/api.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/mpi/api.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,907 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +#include "api.h" +#include "fftw3-mpi.h" +#include "ifftw-mpi.h" +#include "mpi-transpose.h" +#include "mpi-dft.h" +#include "mpi-rdft.h" +#include "mpi-rdft2.h" + +/* Convert API flags to internal MPI flags. */ +#define MPI_FLAGS(f) ((f) >> 27) + +/*************************************************************************/ + +static int mpi_inited = 0; + +static MPI_Comm problem_comm(const problem *p) { + switch (p->adt->problem_kind) { + case PROBLEM_MPI_DFT: + return ((const problem_mpi_dft *) p)->comm; + case PROBLEM_MPI_RDFT: + return ((const problem_mpi_rdft *) p)->comm; + case PROBLEM_MPI_RDFT2: + return ((const problem_mpi_rdft2 *) p)->comm; + case PROBLEM_MPI_TRANSPOSE: + return ((const problem_mpi_transpose *) p)->comm; + default: + return MPI_COMM_NULL; + } +} + +/* used to synchronize cost measurements (timing or estimation) + across all processes for an MPI problem, which is critical to + ensure that all processes decide to use the same MPI plans + (whereas serial plans need not be syncronized). */ +static double cost_hook(const problem *p, double t, cost_kind k) +{ + MPI_Comm comm = problem_comm(p); + double tsum; + if (comm == MPI_COMM_NULL) return t; + MPI_Allreduce(&t, &tsum, 1, MPI_DOUBLE, + k == COST_SUM ? MPI_SUM : MPI_MAX, comm); + return tsum; +} + +/* Used to reject wisdom that is not in sync across all processes + for an MPI problem, which is critical to ensure that all processes + decide to use the same MPI plans. (Even though costs are synchronized, + above, out-of-sync wisdom may result from plans being produced + by communicators that do not span all processes, either from a + user-specified communicator or e.g. from transpose-recurse. */ +static int wisdom_ok_hook(const problem *p, flags_t flags) +{ + MPI_Comm comm = problem_comm(p); + int eq_me, eq_all; + /* unpack flags bitfield, since MPI communications may involve + byte-order changes and MPI cannot do this for bit fields */ +#if SIZEOF_UNSIGNED_INT >= 4 /* must be big enough to hold 20-bit fields */ + unsigned int f[5]; +#else + unsigned long f[5]; /* at least 32 bits as per C standard */ +#endif + + if (comm == MPI_COMM_NULL) return 1; /* non-MPI wisdom is always ok */ + + if (XM(any_true)(0, comm)) return 0; /* some process had nowisdom_hook */ + + /* otherwise, check that the flags and solver index are identical + on all processes in this problem's communicator. + + TO DO: possibly we can relax strict equality, but it is + critical to ensure that any flags which affect what plan is + created (and whether the solver is applicable) are the same, + e.g. DESTROY_INPUT, NO_UGLY, etcetera. (If the MPI algorithm + differs between processes, deadlocks/crashes generally result.) */ + f[0] = flags.l; + f[1] = flags.hash_info; + f[2] = flags.timelimit_impatience; + f[3] = flags.u; + f[4] = flags.slvndx; + MPI_Bcast(f, 5, + SIZEOF_UNSIGNED_INT >= 4 ? MPI_UNSIGNED : MPI_UNSIGNED_LONG, + 0, comm); + eq_me = f[0] == flags.l && f[1] == flags.hash_info + && f[2] == flags.timelimit_impatience + && f[3] == flags.u && f[4] == flags.slvndx; + MPI_Allreduce(&eq_me, &eq_all, 1, MPI_INT, MPI_LAND, comm); + return eq_all; +} + +/* This hook is called when wisdom is not found. The any_true here + matches up with the any_true in wisdom_ok_hook, in order to handle + the case where some processes had wisdom (and called wisdom_ok_hook) + and some processes didn't have wisdom (and called nowisdom_hook). */ +static void nowisdom_hook(const problem *p) +{ + MPI_Comm comm = problem_comm(p); + if (comm == MPI_COMM_NULL) return; /* nothing to do for non-MPI p */ + XM(any_true)(1, comm); /* signal nowisdom to any wisdom_ok_hook */ +} + +/* needed to synchronize planner bogosity flag, in case non-MPI problems + on a subset of processes encountered bogus wisdom */ +static wisdom_state_t bogosity_hook(wisdom_state_t state, const problem *p) +{ + MPI_Comm comm = problem_comm(p); + if (comm != MPI_COMM_NULL /* an MPI problem */ + && XM(any_true)(state == WISDOM_IS_BOGUS, comm)) /* bogus somewhere */ + return WISDOM_IS_BOGUS; + return state; +} + +void XM(init)(void) +{ + if (!mpi_inited) { + planner *plnr = X(the_planner)(); + plnr->cost_hook = cost_hook; + plnr->wisdom_ok_hook = wisdom_ok_hook; + plnr->nowisdom_hook = nowisdom_hook; + plnr->bogosity_hook = bogosity_hook; + XM(conf_standard)(plnr); + mpi_inited = 1; + } +} + +void XM(cleanup)(void) +{ + X(cleanup)(); + mpi_inited = 0; +} + +/*************************************************************************/ + +static dtensor *mkdtensor_api(int rnk, const XM(ddim) *dims0) +{ + dtensor *x = XM(mkdtensor)(rnk); + int i; + for (i = 0; i < rnk; ++i) { + x->dims[i].n = dims0[i].n; + x->dims[i].b[IB] = dims0[i].ib; + x->dims[i].b[OB] = dims0[i].ob; + } + return x; +} + +static dtensor *default_sz(int rnk, const XM(ddim) *dims0, int n_pes, + int rdft2) +{ + dtensor *sz = XM(mkdtensor)(rnk); + dtensor *sz0 = mkdtensor_api(rnk, dims0); + block_kind k; + int i; + + for (i = 0; i < rnk; ++i) + sz->dims[i].n = dims0[i].n; + + if (rdft2) sz->dims[rnk-1].n = dims0[rnk-1].n / 2 + 1; + + for (i = 0; i < rnk; ++i) { + sz->dims[i].b[IB] = dims0[i].ib ? dims0[i].ib : sz->dims[i].n; + sz->dims[i].b[OB] = dims0[i].ob ? dims0[i].ob : sz->dims[i].n; + } + + /* If we haven't used all of the processes yet, and some of the + block sizes weren't specified (i.e. 0), then set the + unspecified blocks so as to use as many processes as + possible with as few distributed dimensions as possible. */ + FORALL_BLOCK_KIND(k) { + INT nb = XM(num_blocks_total)(sz, k); + INT np = n_pes / nb; + for (i = 0; i < rnk && np > 1; ++i) + if (!sz0->dims[i].b[k]) { + sz->dims[i].b[k] = XM(default_block)(sz->dims[i].n, np); + nb *= XM(num_blocks)(sz->dims[i].n, sz->dims[i].b[k]); + np = n_pes / nb; + } + } + + if (rdft2) sz->dims[rnk-1].n = dims0[rnk-1].n; + + /* punt for 1d prime */ + if (rnk == 1 && X(is_prime)(sz->dims[0].n)) + sz->dims[0].b[IB] = sz->dims[0].b[OB] = sz->dims[0].n; + + XM(dtensor_destroy)(sz0); + sz0 = XM(dtensor_canonical)(sz, 0); + XM(dtensor_destroy)(sz); + return sz0; +} + +/* allocate simple local (serial) dims array corresponding to n[rnk] */ +static XM(ddim) *simple_dims(int rnk, const ptrdiff_t *n) +{ + XM(ddim) *dims = (XM(ddim) *) MALLOC(sizeof(XM(ddim)) * rnk, + TENSORS); + int i; + for (i = 0; i < rnk; ++i) + dims[i].n = dims[i].ib = dims[i].ob = n[i]; + return dims; +} + +/*************************************************************************/ + +static void local_size(int my_pe, const dtensor *sz, block_kind k, + ptrdiff_t *local_n, ptrdiff_t *local_start) +{ + int i; + if (my_pe >= XM(num_blocks_total)(sz, k)) + for (i = 0; i < sz->rnk; ++i) + local_n[i] = local_start[i] = 0; + else { + XM(block_coords)(sz, k, my_pe, local_start); + for (i = 0; i < sz->rnk; ++i) { + local_n[i] = XM(block)(sz->dims[i].n, sz->dims[i].b[k], + local_start[i]); + local_start[i] *= sz->dims[i].b[k]; + } + } +} + +static INT prod(int rnk, const ptrdiff_t *local_n) +{ + int i; + INT N = 1; + for (i = 0; i < rnk; ++i) N *= local_n[i]; + return N; +} + +ptrdiff_t XM(local_size_guru)(int rnk, const XM(ddim) *dims0, + ptrdiff_t howmany, MPI_Comm comm, + ptrdiff_t *local_n_in, + ptrdiff_t *local_start_in, + ptrdiff_t *local_n_out, + ptrdiff_t *local_start_out, + int sign, unsigned flags) +{ + INT N; + int my_pe, n_pes, i; + dtensor *sz; + + if (rnk == 0) + return howmany; + + MPI_Comm_rank(comm, &my_pe); + MPI_Comm_size(comm, &n_pes); + sz = default_sz(rnk, dims0, n_pes, 0); + + /* Now, we must figure out how much local space the user should + allocate (or at least an upper bound). This depends strongly + on the exact algorithms we employ...ugh! FIXME: get this info + from the solvers somehow? */ + N = 1; /* never return zero allocation size */ + if (rnk > 1 && XM(is_block1d)(sz, IB) && XM(is_block1d)(sz, OB)) { + INT Nafter; + ddim odims[2]; + + /* dft-rank-geq2-transposed */ + odims[0] = sz->dims[0]; odims[1] = sz->dims[1]; /* save */ + /* we may need extra space for transposed intermediate data */ + for (i = 0; i < 2; ++i) + if (XM(num_blocks)(sz->dims[i].n, sz->dims[i].b[IB]) == 1 && + XM(num_blocks)(sz->dims[i].n, sz->dims[i].b[OB]) == 1) { + sz->dims[i].b[IB] + = XM(default_block)(sz->dims[i].n, n_pes); + sz->dims[1-i].b[IB] = sz->dims[1-i].n; + local_size(my_pe, sz, IB, local_n_in, local_start_in); + N = X(imax)(N, prod(rnk, local_n_in)); + sz->dims[i] = odims[i]; + sz->dims[1-i] = odims[1-i]; + break; + } + + /* dft-rank-geq2 */ + Nafter = howmany; + for (i = 1; i < sz->rnk; ++i) Nafter *= sz->dims[i].n; + N = X(imax)(N, (sz->dims[0].n + * XM(block)(Nafter, XM(default_block)(Nafter, n_pes), + my_pe) + howmany - 1) / howmany); + + /* dft-rank-geq2 with dimensions swapped */ + Nafter = howmany * sz->dims[0].n; + for (i = 2; i < sz->rnk; ++i) Nafter *= sz->dims[i].n; + N = X(imax)(N, (sz->dims[1].n + * XM(block)(Nafter, XM(default_block)(Nafter, n_pes), + my_pe) + howmany - 1) / howmany); + } + else if (rnk == 1) { + if (howmany >= n_pes && !MPI_FLAGS(flags)) { /* dft-rank1-bigvec */ + ptrdiff_t n[2], start[2]; + dtensor *sz2 = XM(mkdtensor)(2); + sz2->dims[0] = sz->dims[0]; + sz2->dims[0].b[IB] = sz->dims[0].n; + sz2->dims[1].n = sz2->dims[1].b[OB] = howmany; + sz2->dims[1].b[IB] = XM(default_block)(howmany, n_pes); + local_size(my_pe, sz2, IB, n, start); + XM(dtensor_destroy)(sz2); + N = X(imax)(N, (prod(2, n) + howmany - 1) / howmany); + } + else { /* dft-rank1 */ + INT r, m, rblock[2], mblock[2]; + + /* Since the 1d transforms are so different, we require + the user to call local_size_1d for this case. Ugh. */ + CK(sign == FFTW_FORWARD || sign == FFTW_BACKWARD); + + if ((r = XM(choose_radix)(sz->dims[0], n_pes, flags, sign, + rblock, mblock))) { + m = sz->dims[0].n / r; + if (flags & FFTW_MPI_SCRAMBLED_IN) + sz->dims[0].b[IB] = rblock[IB] * m; + else { /* !SCRAMBLED_IN */ + sz->dims[0].b[IB] = r * mblock[IB]; + N = X(imax)(N, rblock[IB] * m); + } + if (flags & FFTW_MPI_SCRAMBLED_OUT) + sz->dims[0].b[OB] = r * mblock[OB]; + else { /* !SCRAMBLED_OUT */ + N = X(imax)(N, r * mblock[OB]); + sz->dims[0].b[OB] = rblock[OB] * m; + } + } + } + } + + local_size(my_pe, sz, IB, local_n_in, local_start_in); + local_size(my_pe, sz, OB, local_n_out, local_start_out); + + /* at least, make sure we have enough space to store input & output */ + N = X(imax)(N, X(imax)(prod(rnk, local_n_in), prod(rnk, local_n_out))); + + XM(dtensor_destroy)(sz); + return N * howmany; +} + +ptrdiff_t XM(local_size_many_transposed)(int rnk, const ptrdiff_t *n, + ptrdiff_t howmany, + ptrdiff_t xblock, ptrdiff_t yblock, + MPI_Comm comm, + ptrdiff_t *local_nx, + ptrdiff_t *local_x_start, + ptrdiff_t *local_ny, + ptrdiff_t *local_y_start) +{ + ptrdiff_t N; + XM(ddim) *dims; + ptrdiff_t *local; + + if (rnk == 0) { + *local_nx = *local_ny = 1; + *local_x_start = *local_y_start = 0; + return howmany; + } + + dims = simple_dims(rnk, n); + local = (ptrdiff_t *) MALLOC(sizeof(ptrdiff_t) * rnk * 4, TENSORS); + + /* default 1d block distribution, with transposed output + if yblock < n[1] */ + dims[0].ib = xblock; + if (rnk > 1) { + if (yblock < n[1]) + dims[1].ob = yblock; + else + dims[0].ob = xblock; + } + else + dims[0].ob = xblock; /* FIXME: 1d not really supported here + since we don't have flags/sign */ + + N = XM(local_size_guru)(rnk, dims, howmany, comm, + local, local + rnk, + local + 2*rnk, local + 3*rnk, + 0, 0); + *local_nx = local[0]; + *local_x_start = local[rnk]; + if (rnk > 1) { + *local_ny = local[2*rnk + 1]; + *local_y_start = local[3*rnk + 1]; + } + else { + *local_ny = *local_nx; + *local_y_start = *local_x_start; + } + X(ifree)(local); + X(ifree)(dims); + return N; +} + +ptrdiff_t XM(local_size_many)(int rnk, const ptrdiff_t *n, + ptrdiff_t howmany, + ptrdiff_t xblock, + MPI_Comm comm, + ptrdiff_t *local_nx, + ptrdiff_t *local_x_start) +{ + ptrdiff_t local_ny, local_y_start; + return XM(local_size_many_transposed)(rnk, n, howmany, + xblock, rnk > 1 + ? n[1] : FFTW_MPI_DEFAULT_BLOCK, + comm, + local_nx, local_x_start, + &local_ny, &local_y_start); +} + + +ptrdiff_t XM(local_size_transposed)(int rnk, const ptrdiff_t *n, + MPI_Comm comm, + ptrdiff_t *local_nx, + ptrdiff_t *local_x_start, + ptrdiff_t *local_ny, + ptrdiff_t *local_y_start) +{ + return XM(local_size_many_transposed)(rnk, n, 1, + FFTW_MPI_DEFAULT_BLOCK, + FFTW_MPI_DEFAULT_BLOCK, + comm, + local_nx, local_x_start, + local_ny, local_y_start); +} + +ptrdiff_t XM(local_size)(int rnk, const ptrdiff_t *n, + MPI_Comm comm, + ptrdiff_t *local_nx, + ptrdiff_t *local_x_start) +{ + return XM(local_size_many)(rnk, n, 1, FFTW_MPI_DEFAULT_BLOCK, comm, + local_nx, local_x_start); +} + +ptrdiff_t XM(local_size_many_1d)(ptrdiff_t nx, ptrdiff_t howmany, + MPI_Comm comm, int sign, unsigned flags, + ptrdiff_t *local_nx, ptrdiff_t *local_x_start, + ptrdiff_t *local_ny, ptrdiff_t *local_y_start) +{ + XM(ddim) d; + d.n = nx; + d.ib = d.ob = FFTW_MPI_DEFAULT_BLOCK; + return XM(local_size_guru)(1, &d, howmany, comm, + local_nx, local_x_start, + local_ny, local_y_start, sign, flags); +} + +ptrdiff_t XM(local_size_1d)(ptrdiff_t nx, + MPI_Comm comm, int sign, unsigned flags, + ptrdiff_t *local_nx, ptrdiff_t *local_x_start, + ptrdiff_t *local_ny, ptrdiff_t *local_y_start) +{ + return XM(local_size_many_1d)(nx, 1, comm, sign, flags, + local_nx, local_x_start, + local_ny, local_y_start); +} + +ptrdiff_t XM(local_size_2d_transposed)(ptrdiff_t nx, ptrdiff_t ny, + MPI_Comm comm, + ptrdiff_t *local_nx, + ptrdiff_t *local_x_start, + ptrdiff_t *local_ny, + ptrdiff_t *local_y_start) +{ + ptrdiff_t n[2]; + n[0] = nx; n[1] = ny; + return XM(local_size_transposed)(2, n, comm, + local_nx, local_x_start, + local_ny, local_y_start); +} + +ptrdiff_t XM(local_size_2d)(ptrdiff_t nx, ptrdiff_t ny, MPI_Comm comm, + ptrdiff_t *local_nx, ptrdiff_t *local_x_start) +{ + ptrdiff_t n[2]; + n[0] = nx; n[1] = ny; + return XM(local_size)(2, n, comm, local_nx, local_x_start); +} + +ptrdiff_t XM(local_size_3d_transposed)(ptrdiff_t nx, ptrdiff_t ny, + ptrdiff_t nz, + MPI_Comm comm, + ptrdiff_t *local_nx, + ptrdiff_t *local_x_start, + ptrdiff_t *local_ny, + ptrdiff_t *local_y_start) +{ + ptrdiff_t n[3]; + n[0] = nx; n[1] = ny; n[2] = nz; + return XM(local_size_transposed)(3, n, comm, + local_nx, local_x_start, + local_ny, local_y_start); +} + +ptrdiff_t XM(local_size_3d)(ptrdiff_t nx, ptrdiff_t ny, ptrdiff_t nz, + MPI_Comm comm, + ptrdiff_t *local_nx, ptrdiff_t *local_x_start) +{ + ptrdiff_t n[3]; + n[0] = nx; n[1] = ny; n[2] = nz; + return XM(local_size)(3, n, comm, local_nx, local_x_start); +} + +/*************************************************************************/ +/* Transpose API */ + +X(plan) XM(plan_many_transpose)(ptrdiff_t nx, ptrdiff_t ny, + ptrdiff_t howmany, + ptrdiff_t xblock, ptrdiff_t yblock, + R *in, R *out, + MPI_Comm comm, unsigned flags) +{ + int n_pes; + XM(init)(); + + if (howmany < 0 || xblock < 0 || yblock < 0 || + nx <= 0 || ny <= 0) return 0; + + MPI_Comm_size(comm, &n_pes); + if (!xblock) xblock = XM(default_block)(nx, n_pes); + if (!yblock) yblock = XM(default_block)(ny, n_pes); + if (n_pes < XM(num_blocks)(nx, xblock) + || n_pes < XM(num_blocks)(ny, yblock)) + return 0; + + return + X(mkapiplan)(FFTW_FORWARD, flags, + XM(mkproblem_transpose)(nx, ny, howmany, + in, out, xblock, yblock, + comm, MPI_FLAGS(flags))); +} + +X(plan) XM(plan_transpose)(ptrdiff_t nx, ptrdiff_t ny, R *in, R *out, + MPI_Comm comm, unsigned flags) + +{ + return XM(plan_many_transpose)(nx, ny, 1, + FFTW_MPI_DEFAULT_BLOCK, + FFTW_MPI_DEFAULT_BLOCK, + in, out, comm, flags); +} + +/*************************************************************************/ +/* Complex DFT API */ + +X(plan) XM(plan_guru_dft)(int rnk, const XM(ddim) *dims0, + ptrdiff_t howmany, + C *in, C *out, + MPI_Comm comm, int sign, unsigned flags) +{ + int n_pes, i; + dtensor *sz; + + XM(init)(); + + if (howmany < 0 || rnk < 1) return 0; + for (i = 0; i < rnk; ++i) + if (dims0[i].n < 1 || dims0[i].ib < 0 || dims0[i].ob < 0) + return 0; + + MPI_Comm_size(comm, &n_pes); + sz = default_sz(rnk, dims0, n_pes, 0); + + if (XM(num_blocks_total)(sz, IB) > n_pes + || XM(num_blocks_total)(sz, OB) > n_pes) { + XM(dtensor_destroy)(sz); + return 0; + } + + return + X(mkapiplan)(sign, flags, + XM(mkproblem_dft_d)(sz, howmany, + (R *) in, (R *) out, + comm, sign, + MPI_FLAGS(flags))); +} + +X(plan) XM(plan_many_dft)(int rnk, const ptrdiff_t *n, + ptrdiff_t howmany, + ptrdiff_t iblock, ptrdiff_t oblock, + C *in, C *out, + MPI_Comm comm, int sign, unsigned flags) +{ + XM(ddim) *dims = simple_dims(rnk, n); + X(plan) pln; + + if (rnk == 1) { + dims[0].ib = iblock; + dims[0].ob = oblock; + } + else if (rnk > 1) { + dims[0 != (flags & FFTW_MPI_TRANSPOSED_IN)].ib = iblock; + dims[0 != (flags & FFTW_MPI_TRANSPOSED_OUT)].ob = oblock; + } + + pln = XM(plan_guru_dft)(rnk,dims,howmany, in,out, comm, sign, flags); + X(ifree)(dims); + return pln; +} + +X(plan) XM(plan_dft)(int rnk, const ptrdiff_t *n, C *in, C *out, + MPI_Comm comm, int sign, unsigned flags) +{ + return XM(plan_many_dft)(rnk, n, 1, + FFTW_MPI_DEFAULT_BLOCK, + FFTW_MPI_DEFAULT_BLOCK, + in, out, comm, sign, flags); +} + +X(plan) XM(plan_dft_1d)(ptrdiff_t nx, C *in, C *out, + MPI_Comm comm, int sign, unsigned flags) +{ + return XM(plan_dft)(1, &nx, in, out, comm, sign, flags); +} + +X(plan) XM(plan_dft_2d)(ptrdiff_t nx, ptrdiff_t ny, C *in, C *out, + MPI_Comm comm, int sign, unsigned flags) +{ + ptrdiff_t n[2]; + n[0] = nx; n[1] = ny; + return XM(plan_dft)(2, n, in, out, comm, sign, flags); +} + +X(plan) XM(plan_dft_3d)(ptrdiff_t nx, ptrdiff_t ny, ptrdiff_t nz, + C *in, C *out, + MPI_Comm comm, int sign, unsigned flags) +{ + ptrdiff_t n[3]; + n[0] = nx; n[1] = ny; n[2] = nz; + return XM(plan_dft)(3, n, in, out, comm, sign, flags); +} + +/*************************************************************************/ +/* R2R API */ + +X(plan) XM(plan_guru_r2r)(int rnk, const XM(ddim) *dims0, + ptrdiff_t howmany, + R *in, R *out, + MPI_Comm comm, const X(r2r_kind) *kind, + unsigned flags) +{ + int n_pes, i; + dtensor *sz; + rdft_kind *k; + X(plan) pln; + + XM(init)(); + + if (howmany < 0 || rnk < 1) return 0; + for (i = 0; i < rnk; ++i) + if (dims0[i].n < 1 || dims0[i].ib < 0 || dims0[i].ob < 0) + return 0; + + k = X(map_r2r_kind)(rnk, kind); + + MPI_Comm_size(comm, &n_pes); + sz = default_sz(rnk, dims0, n_pes, 0); + + if (XM(num_blocks_total)(sz, IB) > n_pes + || XM(num_blocks_total)(sz, OB) > n_pes) { + XM(dtensor_destroy)(sz); + return 0; + } + + pln = X(mkapiplan)(0, flags, + XM(mkproblem_rdft_d)(sz, howmany, + in, out, + comm, k, MPI_FLAGS(flags))); + X(ifree0)(k); + return pln; +} + +X(plan) XM(plan_many_r2r)(int rnk, const ptrdiff_t *n, + ptrdiff_t howmany, + ptrdiff_t iblock, ptrdiff_t oblock, + R *in, R *out, + MPI_Comm comm, const X(r2r_kind) *kind, + unsigned flags) +{ + XM(ddim) *dims = simple_dims(rnk, n); + X(plan) pln; + + if (rnk == 1) { + dims[0].ib = iblock; + dims[0].ob = oblock; + } + else if (rnk > 1) { + dims[0 != (flags & FFTW_MPI_TRANSPOSED_IN)].ib = iblock; + dims[0 != (flags & FFTW_MPI_TRANSPOSED_OUT)].ob = oblock; + } + + pln = XM(plan_guru_r2r)(rnk,dims,howmany, in,out, comm, kind, flags); + X(ifree)(dims); + return pln; +} + +X(plan) XM(plan_r2r)(int rnk, const ptrdiff_t *n, R *in, R *out, + MPI_Comm comm, + const X(r2r_kind) *kind, + unsigned flags) +{ + return XM(plan_many_r2r)(rnk, n, 1, + FFTW_MPI_DEFAULT_BLOCK, + FFTW_MPI_DEFAULT_BLOCK, + in, out, comm, kind, flags); +} + +X(plan) XM(plan_r2r_2d)(ptrdiff_t nx, ptrdiff_t ny, R *in, R *out, + MPI_Comm comm, + X(r2r_kind) kindx, X(r2r_kind) kindy, + unsigned flags) +{ + ptrdiff_t n[2]; + X(r2r_kind) kind[2]; + n[0] = nx; n[1] = ny; + kind[0] = kindx; kind[1] = kindy; + return XM(plan_r2r)(2, n, in, out, comm, kind, flags); +} + +X(plan) XM(plan_r2r_3d)(ptrdiff_t nx, ptrdiff_t ny, ptrdiff_t nz, + R *in, R *out, + MPI_Comm comm, + X(r2r_kind) kindx, X(r2r_kind) kindy, + X(r2r_kind) kindz, + unsigned flags) +{ + ptrdiff_t n[3]; + X(r2r_kind) kind[3]; + n[0] = nx; n[1] = ny; n[2] = nz; + kind[0] = kindx; kind[1] = kindy; kind[2] = kindz; + return XM(plan_r2r)(3, n, in, out, comm, kind, flags); +} + +/*************************************************************************/ +/* R2C/C2R API */ + +static X(plan) plan_guru_rdft2(int rnk, const XM(ddim) *dims0, + ptrdiff_t howmany, + R *r, C *c, + MPI_Comm comm, rdft_kind kind, unsigned flags) +{ + int n_pes, i; + dtensor *sz; + R *cr = (R *) c; + + XM(init)(); + + if (howmany < 0 || rnk < 2) return 0; + for (i = 0; i < rnk; ++i) + if (dims0[i].n < 1 || dims0[i].ib < 0 || dims0[i].ob < 0) + return 0; + + MPI_Comm_size(comm, &n_pes); + sz = default_sz(rnk, dims0, n_pes, 1); + + sz->dims[rnk-1].n = dims0[rnk-1].n / 2 + 1; + if (XM(num_blocks_total)(sz, IB) > n_pes + || XM(num_blocks_total)(sz, OB) > n_pes) { + XM(dtensor_destroy)(sz); + return 0; + } + sz->dims[rnk-1].n = dims0[rnk-1].n; + + if (kind == R2HC) + return X(mkapiplan)(0, flags, + XM(mkproblem_rdft2_d)(sz, howmany, + r, cr, comm, R2HC, + MPI_FLAGS(flags))); + else + return X(mkapiplan)(0, flags, + XM(mkproblem_rdft2_d)(sz, howmany, + cr, r, comm, HC2R, + MPI_FLAGS(flags))); +} + +X(plan) XM(plan_many_dft_r2c)(int rnk, const ptrdiff_t *n, + ptrdiff_t howmany, + ptrdiff_t iblock, ptrdiff_t oblock, + R *in, C *out, + MPI_Comm comm, unsigned flags) +{ + XM(ddim) *dims = simple_dims(rnk, n); + X(plan) pln; + + if (rnk == 1) { + dims[0].ib = iblock; + dims[0].ob = oblock; + } + else if (rnk > 1) { + dims[0 != (flags & FFTW_MPI_TRANSPOSED_IN)].ib = iblock; + dims[0 != (flags & FFTW_MPI_TRANSPOSED_OUT)].ob = oblock; + } + + pln = plan_guru_rdft2(rnk,dims,howmany, in,out, comm, R2HC, flags); + X(ifree)(dims); + return pln; +} + +X(plan) XM(plan_many_dft_c2r)(int rnk, const ptrdiff_t *n, + ptrdiff_t howmany, + ptrdiff_t iblock, ptrdiff_t oblock, + C *in, R *out, + MPI_Comm comm, unsigned flags) +{ + XM(ddim) *dims = simple_dims(rnk, n); + X(plan) pln; + + if (rnk == 1) { + dims[0].ib = iblock; + dims[0].ob = oblock; + } + else if (rnk > 1) { + dims[0 != (flags & FFTW_MPI_TRANSPOSED_IN)].ib = iblock; + dims[0 != (flags & FFTW_MPI_TRANSPOSED_OUT)].ob = oblock; + } + + pln = plan_guru_rdft2(rnk,dims,howmany, out,in, comm, HC2R, flags); + X(ifree)(dims); + return pln; +} + +X(plan) XM(plan_dft_r2c)(int rnk, const ptrdiff_t *n, R *in, C *out, + MPI_Comm comm, unsigned flags) +{ + return XM(plan_many_dft_r2c)(rnk, n, 1, + FFTW_MPI_DEFAULT_BLOCK, + FFTW_MPI_DEFAULT_BLOCK, + in, out, comm, flags); +} + +X(plan) XM(plan_dft_r2c_2d)(ptrdiff_t nx, ptrdiff_t ny, R *in, C *out, + MPI_Comm comm, unsigned flags) +{ + ptrdiff_t n[2]; + n[0] = nx; n[1] = ny; + return XM(plan_dft_r2c)(2, n, in, out, comm, flags); +} + +X(plan) XM(plan_dft_r2c_3d)(ptrdiff_t nx, ptrdiff_t ny, ptrdiff_t nz, + R *in, C *out, MPI_Comm comm, unsigned flags) +{ + ptrdiff_t n[3]; + n[0] = nx; n[1] = ny; n[2] = nz; + return XM(plan_dft_r2c)(3, n, in, out, comm, flags); +} + +X(plan) XM(plan_dft_c2r)(int rnk, const ptrdiff_t *n, C *in, R *out, + MPI_Comm comm, unsigned flags) +{ + return XM(plan_many_dft_c2r)(rnk, n, 1, + FFTW_MPI_DEFAULT_BLOCK, + FFTW_MPI_DEFAULT_BLOCK, + in, out, comm, flags); +} + +X(plan) XM(plan_dft_c2r_2d)(ptrdiff_t nx, ptrdiff_t ny, C *in, R *out, + MPI_Comm comm, unsigned flags) +{ + ptrdiff_t n[2]; + n[0] = nx; n[1] = ny; + return XM(plan_dft_c2r)(2, n, in, out, comm, flags); +} + +X(plan) XM(plan_dft_c2r_3d)(ptrdiff_t nx, ptrdiff_t ny, ptrdiff_t nz, + C *in, R *out, MPI_Comm comm, unsigned flags) +{ + ptrdiff_t n[3]; + n[0] = nx; n[1] = ny; n[2] = nz; + return XM(plan_dft_c2r)(3, n, in, out, comm, flags); +} + +/*************************************************************************/ +/* New-array execute functions */ + +void XM(execute_dft)(const X(plan) p, C *in, C *out) { + /* internally, MPI plans are just rdft plans */ + X(execute_r2r)(p, (R*) in, (R*) out); +} + +void XM(execute_dft_r2c)(const X(plan) p, R *in, C *out) { + /* internally, MPI plans are just rdft plans */ + X(execute_r2r)(p, in, (R*) out); +} + +void XM(execute_dft_c2r)(const X(plan) p, C *in, R *out) { + /* internally, MPI plans are just rdft plans */ + X(execute_r2r)(p, (R*) in, out); +} + +void XM(execute_r2r)(const X(plan) p, R *in, R *out) { + /* internally, MPI plans are just rdft plans */ + X(execute_r2r)(p, in, out); +}