diff src/fftw-3.3.3/mpi/api.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/mpi/api.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,907 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+#include "api.h"
+#include "fftw3-mpi.h"
+#include "ifftw-mpi.h"
+#include "mpi-transpose.h"
+#include "mpi-dft.h"
+#include "mpi-rdft.h"
+#include "mpi-rdft2.h"
+
+/* Convert API flags to internal MPI flags. */
+#define MPI_FLAGS(f) ((f) >> 27)
+
+/*************************************************************************/
+
+static int mpi_inited = 0;
+
+static MPI_Comm problem_comm(const problem *p) {
+     switch (p->adt->problem_kind) {
+	 case PROBLEM_MPI_DFT:
+	      return ((const problem_mpi_dft *) p)->comm;
+	 case PROBLEM_MPI_RDFT:
+	      return ((const problem_mpi_rdft *) p)->comm;
+	 case PROBLEM_MPI_RDFT2:
+	      return ((const problem_mpi_rdft2 *) p)->comm;
+	 case PROBLEM_MPI_TRANSPOSE:
+	      return ((const problem_mpi_transpose *) p)->comm;
+	 default:
+	      return MPI_COMM_NULL;
+     }
+}
+
+/* used to synchronize cost measurements (timing or estimation)
+   across all processes for an MPI problem, which is critical to
+   ensure that all processes decide to use the same MPI plans
+   (whereas serial plans need not be syncronized). */
+static double cost_hook(const problem *p, double t, cost_kind k)
+{
+     MPI_Comm comm = problem_comm(p);
+     double tsum;
+     if (comm == MPI_COMM_NULL) return t;
+     MPI_Allreduce(&t, &tsum, 1, MPI_DOUBLE, 
+		   k == COST_SUM ? MPI_SUM : MPI_MAX, comm);
+     return tsum;
+}
+
+/* Used to reject wisdom that is not in sync across all processes
+   for an MPI problem, which is critical to ensure that all processes
+   decide to use the same MPI plans.  (Even though costs are synchronized,
+   above, out-of-sync wisdom may result from plans being produced
+   by communicators that do not span all processes, either from a
+   user-specified communicator or e.g. from transpose-recurse. */
+static int wisdom_ok_hook(const problem *p, flags_t flags)
+{
+     MPI_Comm comm = problem_comm(p);
+     int eq_me, eq_all;
+     /* unpack flags bitfield, since MPI communications may involve
+	byte-order changes and MPI cannot do this for bit fields */
+#if SIZEOF_UNSIGNED_INT >= 4 /* must be big enough to hold 20-bit fields */
+     unsigned int f[5];
+#else
+     unsigned long f[5]; /* at least 32 bits as per C standard */
+#endif
+
+     if (comm == MPI_COMM_NULL) return 1; /* non-MPI wisdom is always ok */
+
+     if (XM(any_true)(0, comm)) return 0; /* some process had nowisdom_hook */
+
+     /* otherwise, check that the flags and solver index are identical
+	on all processes in this problem's communicator.
+
+	TO DO: possibly we can relax strict equality, but it is
+	critical to ensure that any flags which affect what plan is
+	created (and whether the solver is applicable) are the same,
+	e.g. DESTROY_INPUT, NO_UGLY, etcetera.  (If the MPI algorithm
+	differs between processes, deadlocks/crashes generally result.) */
+     f[0] = flags.l;
+     f[1] = flags.hash_info;
+     f[2] = flags.timelimit_impatience;
+     f[3] = flags.u;
+     f[4] = flags.slvndx;
+     MPI_Bcast(f, 5, 
+	       SIZEOF_UNSIGNED_INT >= 4 ? MPI_UNSIGNED : MPI_UNSIGNED_LONG,
+	       0, comm);
+     eq_me = f[0] == flags.l && f[1] == flags.hash_info
+	  && f[2] == flags.timelimit_impatience
+	  && f[3] == flags.u && f[4] == flags.slvndx;
+     MPI_Allreduce(&eq_me, &eq_all, 1, MPI_INT, MPI_LAND, comm);
+     return eq_all;
+}
+
+/* This hook is called when wisdom is not found.  The any_true here
+   matches up with the any_true in wisdom_ok_hook, in order to handle
+   the case where some processes had wisdom (and called wisdom_ok_hook)
+   and some processes didn't have wisdom (and called nowisdom_hook). */
+static void nowisdom_hook(const problem *p)
+{
+     MPI_Comm comm = problem_comm(p);
+     if (comm == MPI_COMM_NULL) return; /* nothing to do for non-MPI p */
+     XM(any_true)(1, comm); /* signal nowisdom to any wisdom_ok_hook */
+}
+
+/* needed to synchronize planner bogosity flag, in case non-MPI problems
+   on a subset of processes encountered bogus wisdom */
+static wisdom_state_t bogosity_hook(wisdom_state_t state, const problem *p)
+{
+     MPI_Comm comm = problem_comm(p);
+     if (comm != MPI_COMM_NULL /* an MPI problem */
+	 && XM(any_true)(state == WISDOM_IS_BOGUS, comm)) /* bogus somewhere */
+	  return WISDOM_IS_BOGUS;
+     return state;
+}
+
+void XM(init)(void)
+{
+     if (!mpi_inited) {
+	  planner *plnr = X(the_planner)();
+	  plnr->cost_hook = cost_hook;
+	  plnr->wisdom_ok_hook = wisdom_ok_hook;
+	  plnr->nowisdom_hook = nowisdom_hook;
+	  plnr->bogosity_hook = bogosity_hook;
+          XM(conf_standard)(plnr);
+	  mpi_inited = 1;	  
+     }
+}
+
+void XM(cleanup)(void)
+{
+     X(cleanup)();
+     mpi_inited = 0;
+}
+
+/*************************************************************************/
+
+static dtensor *mkdtensor_api(int rnk, const XM(ddim) *dims0)
+{
+     dtensor *x = XM(mkdtensor)(rnk);
+     int i;
+     for (i = 0; i < rnk; ++i) {
+	  x->dims[i].n = dims0[i].n;
+	  x->dims[i].b[IB] = dims0[i].ib;
+	  x->dims[i].b[OB] = dims0[i].ob;
+     }
+     return x;
+}
+
+static dtensor *default_sz(int rnk, const XM(ddim) *dims0, int n_pes,
+			   int rdft2)
+{
+     dtensor *sz = XM(mkdtensor)(rnk);
+     dtensor *sz0 = mkdtensor_api(rnk, dims0);
+     block_kind k;
+     int i;
+
+     for (i = 0; i < rnk; ++i)
+	  sz->dims[i].n = dims0[i].n;
+
+     if (rdft2) sz->dims[rnk-1].n = dims0[rnk-1].n / 2 + 1;
+
+     for (i = 0; i < rnk; ++i) {
+	  sz->dims[i].b[IB] = dims0[i].ib ? dims0[i].ib : sz->dims[i].n;
+	  sz->dims[i].b[OB] = dims0[i].ob ? dims0[i].ob : sz->dims[i].n;
+     }
+
+     /* If we haven't used all of the processes yet, and some of the
+	block sizes weren't specified (i.e. 0), then set the
+	unspecified blocks so as to use as many processes as
+	possible with as few distributed dimensions as possible. */
+     FORALL_BLOCK_KIND(k) {
+	  INT nb = XM(num_blocks_total)(sz, k);
+	  INT np = n_pes / nb;
+	  for (i = 0; i < rnk && np > 1; ++i)
+	       if (!sz0->dims[i].b[k]) {
+		    sz->dims[i].b[k] = XM(default_block)(sz->dims[i].n, np);
+		    nb *= XM(num_blocks)(sz->dims[i].n, sz->dims[i].b[k]);
+		    np = n_pes / nb;
+	       }
+     }
+
+     if (rdft2) sz->dims[rnk-1].n = dims0[rnk-1].n;
+
+     /* punt for 1d prime */
+     if (rnk == 1 && X(is_prime)(sz->dims[0].n))
+	  sz->dims[0].b[IB] = sz->dims[0].b[OB] = sz->dims[0].n;
+
+     XM(dtensor_destroy)(sz0);
+     sz0 = XM(dtensor_canonical)(sz, 0);
+     XM(dtensor_destroy)(sz);
+     return sz0;
+}
+
+/* allocate simple local (serial) dims array corresponding to n[rnk] */
+static XM(ddim) *simple_dims(int rnk, const ptrdiff_t *n)
+{
+     XM(ddim) *dims = (XM(ddim) *) MALLOC(sizeof(XM(ddim)) * rnk,
+						TENSORS);
+     int i;
+     for (i = 0; i < rnk; ++i)
+	  dims[i].n = dims[i].ib = dims[i].ob = n[i];
+     return dims;
+}
+
+/*************************************************************************/
+
+static void local_size(int my_pe, const dtensor *sz, block_kind k,
+		       ptrdiff_t *local_n, ptrdiff_t *local_start)
+{
+     int i;
+     if (my_pe >= XM(num_blocks_total)(sz, k))
+	  for (i = 0; i < sz->rnk; ++i)
+	       local_n[i] = local_start[i] = 0;
+     else {
+	  XM(block_coords)(sz, k, my_pe, local_start);
+	  for (i = 0; i < sz->rnk; ++i) {
+	       local_n[i] = XM(block)(sz->dims[i].n, sz->dims[i].b[k],
+				      local_start[i]);
+	       local_start[i] *= sz->dims[i].b[k];
+	  }
+     }
+}
+
+static INT prod(int rnk, const ptrdiff_t *local_n) 
+{
+     int i;
+     INT N = 1;
+     for (i = 0; i < rnk; ++i) N *= local_n[i];
+     return N;
+}
+
+ptrdiff_t XM(local_size_guru)(int rnk, const XM(ddim) *dims0,
+			      ptrdiff_t howmany, MPI_Comm comm,
+			      ptrdiff_t *local_n_in,
+			      ptrdiff_t *local_start_in,
+			      ptrdiff_t *local_n_out, 
+			      ptrdiff_t *local_start_out,
+			      int sign, unsigned flags)
+{
+     INT N;
+     int my_pe, n_pes, i;
+     dtensor *sz;
+
+     if (rnk == 0)
+	  return howmany;
+
+     MPI_Comm_rank(comm, &my_pe);
+     MPI_Comm_size(comm, &n_pes);
+     sz = default_sz(rnk, dims0, n_pes, 0);
+
+     /* Now, we must figure out how much local space the user should
+	allocate (or at least an upper bound).  This depends strongly
+	on the exact algorithms we employ...ugh!  FIXME: get this info
+	from the solvers somehow? */
+     N = 1; /* never return zero allocation size */
+     if (rnk > 1 && XM(is_block1d)(sz, IB) && XM(is_block1d)(sz, OB)) {
+	  INT Nafter;
+	  ddim odims[2];
+
+	  /* dft-rank-geq2-transposed */
+	  odims[0] = sz->dims[0]; odims[1] = sz->dims[1]; /* save */
+	  /* we may need extra space for transposed intermediate data */
+	  for (i = 0; i < 2; ++i)
+	       if (XM(num_blocks)(sz->dims[i].n, sz->dims[i].b[IB]) == 1 &&
+		   XM(num_blocks)(sz->dims[i].n, sz->dims[i].b[OB]) == 1) {
+		    sz->dims[i].b[IB]
+			 = XM(default_block)(sz->dims[i].n, n_pes);
+		    sz->dims[1-i].b[IB] = sz->dims[1-i].n;
+		    local_size(my_pe, sz, IB, local_n_in, local_start_in);
+		    N = X(imax)(N, prod(rnk, local_n_in));
+		    sz->dims[i] = odims[i];
+		    sz->dims[1-i] = odims[1-i];
+		    break;
+	       }
+
+	  /* dft-rank-geq2 */
+	  Nafter = howmany;
+	  for (i = 1; i < sz->rnk; ++i) Nafter *= sz->dims[i].n;
+	  N = X(imax)(N, (sz->dims[0].n
+			  * XM(block)(Nafter, XM(default_block)(Nafter, n_pes),
+				      my_pe) + howmany - 1) / howmany);
+
+	  /* dft-rank-geq2 with dimensions swapped */
+	  Nafter = howmany * sz->dims[0].n;
+          for (i = 2; i < sz->rnk; ++i) Nafter *= sz->dims[i].n;
+          N = X(imax)(N, (sz->dims[1].n
+                          * XM(block)(Nafter, XM(default_block)(Nafter, n_pes),
+                                      my_pe) + howmany - 1) / howmany);
+     }
+     else if (rnk == 1) {
+	  if (howmany >= n_pes && !MPI_FLAGS(flags)) { /* dft-rank1-bigvec */
+	       ptrdiff_t n[2], start[2];
+	       dtensor *sz2 = XM(mkdtensor)(2);
+	       sz2->dims[0] = sz->dims[0];
+	       sz2->dims[0].b[IB] = sz->dims[0].n;
+	       sz2->dims[1].n = sz2->dims[1].b[OB] = howmany;
+	       sz2->dims[1].b[IB] = XM(default_block)(howmany, n_pes);
+	       local_size(my_pe, sz2, IB, n, start);
+	       XM(dtensor_destroy)(sz2);
+	       N = X(imax)(N, (prod(2, n) + howmany - 1) / howmany);
+	  }
+	  else { /* dft-rank1 */
+	       INT r, m, rblock[2], mblock[2];
+
+	       /* Since the 1d transforms are so different, we require
+		  the user to call local_size_1d for this case.  Ugh. */
+	       CK(sign == FFTW_FORWARD || sign == FFTW_BACKWARD);
+
+	       if ((r = XM(choose_radix)(sz->dims[0], n_pes, flags, sign,
+					 rblock, mblock))) {
+		    m = sz->dims[0].n / r;
+		    if (flags & FFTW_MPI_SCRAMBLED_IN)
+			 sz->dims[0].b[IB] = rblock[IB] * m;
+		    else { /* !SCRAMBLED_IN */
+			 sz->dims[0].b[IB] = r * mblock[IB];
+			 N = X(imax)(N, rblock[IB] * m);
+		    }
+		    if (flags & FFTW_MPI_SCRAMBLED_OUT)
+			 sz->dims[0].b[OB] = r * mblock[OB];
+		    else { /* !SCRAMBLED_OUT */
+			 N = X(imax)(N, r * mblock[OB]);
+			 sz->dims[0].b[OB] = rblock[OB] * m;
+		    }
+	       }
+	  }
+     }
+
+     local_size(my_pe, sz, IB, local_n_in, local_start_in);
+     local_size(my_pe, sz, OB, local_n_out, local_start_out);
+
+     /* at least, make sure we have enough space to store input & output */
+     N = X(imax)(N, X(imax)(prod(rnk, local_n_in), prod(rnk, local_n_out)));
+
+     XM(dtensor_destroy)(sz);
+     return N * howmany;
+}
+
+ptrdiff_t XM(local_size_many_transposed)(int rnk, const ptrdiff_t *n,
+					 ptrdiff_t howmany,
+					 ptrdiff_t xblock, ptrdiff_t yblock,
+					 MPI_Comm comm,
+					 ptrdiff_t *local_nx,
+					 ptrdiff_t *local_x_start,
+					 ptrdiff_t *local_ny,
+					 ptrdiff_t *local_y_start)
+{
+     ptrdiff_t N;
+     XM(ddim) *dims; 
+     ptrdiff_t *local;
+
+     if (rnk == 0) {
+	  *local_nx = *local_ny = 1;
+	  *local_x_start = *local_y_start = 0;
+	  return howmany;
+     }
+
+     dims = simple_dims(rnk, n);
+     local = (ptrdiff_t *) MALLOC(sizeof(ptrdiff_t) * rnk * 4, TENSORS);
+
+     /* default 1d block distribution, with transposed output
+        if yblock < n[1] */
+     dims[0].ib = xblock;
+     if (rnk > 1) {
+	  if (yblock < n[1])
+	       dims[1].ob = yblock;
+	  else
+	       dims[0].ob = xblock;
+     }
+     else
+	  dims[0].ob = xblock; /* FIXME: 1d not really supported here 
+				         since we don't have flags/sign */
+     
+     N = XM(local_size_guru)(rnk, dims, howmany, comm, 
+			     local, local + rnk,
+			     local + 2*rnk, local + 3*rnk,
+			     0, 0);
+     *local_nx = local[0];
+     *local_x_start = local[rnk];
+     if (rnk > 1) {
+	  *local_ny = local[2*rnk + 1];
+	  *local_y_start = local[3*rnk + 1];
+     }
+     else {
+	  *local_ny = *local_nx;
+	  *local_y_start = *local_x_start;
+     }
+     X(ifree)(local);
+     X(ifree)(dims);
+     return N;
+}
+
+ptrdiff_t XM(local_size_many)(int rnk, const ptrdiff_t *n,
+			      ptrdiff_t howmany, 
+			      ptrdiff_t xblock,
+			      MPI_Comm comm,
+			      ptrdiff_t *local_nx,
+			      ptrdiff_t *local_x_start)
+{
+     ptrdiff_t local_ny, local_y_start;
+     return XM(local_size_many_transposed)(rnk, n, howmany,
+					   xblock, rnk > 1 
+					   ? n[1] : FFTW_MPI_DEFAULT_BLOCK,
+					   comm,
+					   local_nx, local_x_start,
+					   &local_ny, &local_y_start);
+}
+
+
+ptrdiff_t XM(local_size_transposed)(int rnk, const ptrdiff_t *n,
+				    MPI_Comm comm,
+				    ptrdiff_t *local_nx,
+				    ptrdiff_t *local_x_start,
+				    ptrdiff_t *local_ny,
+				    ptrdiff_t *local_y_start)
+{
+     return XM(local_size_many_transposed)(rnk, n, 1,
+					   FFTW_MPI_DEFAULT_BLOCK,
+					   FFTW_MPI_DEFAULT_BLOCK,
+					   comm,
+					   local_nx, local_x_start,
+					   local_ny, local_y_start);
+}
+
+ptrdiff_t XM(local_size)(int rnk, const ptrdiff_t *n,
+			 MPI_Comm comm,
+			 ptrdiff_t *local_nx,
+			 ptrdiff_t *local_x_start)
+{
+     return XM(local_size_many)(rnk, n, 1, FFTW_MPI_DEFAULT_BLOCK, comm,
+				local_nx, local_x_start);
+}
+
+ptrdiff_t XM(local_size_many_1d)(ptrdiff_t nx, ptrdiff_t howmany, 
+				 MPI_Comm comm, int sign, unsigned flags,
+				 ptrdiff_t *local_nx, ptrdiff_t *local_x_start,
+				 ptrdiff_t *local_ny, ptrdiff_t *local_y_start)
+{
+     XM(ddim) d;
+     d.n = nx;
+     d.ib = d.ob = FFTW_MPI_DEFAULT_BLOCK;
+     return XM(local_size_guru)(1, &d, howmany, comm,
+				local_nx, local_x_start,
+				local_ny, local_y_start, sign, flags);
+}
+
+ptrdiff_t XM(local_size_1d)(ptrdiff_t nx,
+			    MPI_Comm comm, int sign, unsigned flags,
+			    ptrdiff_t *local_nx, ptrdiff_t *local_x_start,
+			    ptrdiff_t *local_ny, ptrdiff_t *local_y_start)
+{
+     return XM(local_size_many_1d)(nx, 1, comm, sign, flags,
+				   local_nx, local_x_start,
+				   local_ny, local_y_start);
+}
+
+ptrdiff_t XM(local_size_2d_transposed)(ptrdiff_t nx, ptrdiff_t ny,
+				       MPI_Comm comm,
+				       ptrdiff_t *local_nx,
+				       ptrdiff_t *local_x_start,
+				       ptrdiff_t *local_ny, 
+				       ptrdiff_t *local_y_start)
+{
+     ptrdiff_t n[2];
+     n[0] = nx; n[1] = ny;
+     return XM(local_size_transposed)(2, n, comm,
+				      local_nx, local_x_start,
+				      local_ny, local_y_start);
+}
+
+ptrdiff_t XM(local_size_2d)(ptrdiff_t nx, ptrdiff_t ny, MPI_Comm comm,
+			       ptrdiff_t *local_nx, ptrdiff_t *local_x_start)
+{
+     ptrdiff_t n[2];
+     n[0] = nx; n[1] = ny;
+     return XM(local_size)(2, n, comm, local_nx, local_x_start);
+}
+
+ptrdiff_t XM(local_size_3d_transposed)(ptrdiff_t nx, ptrdiff_t ny,
+				       ptrdiff_t nz,
+				       MPI_Comm comm,
+				       ptrdiff_t *local_nx,
+				       ptrdiff_t *local_x_start,
+				       ptrdiff_t *local_ny, 
+				       ptrdiff_t *local_y_start)
+{
+     ptrdiff_t n[3];
+     n[0] = nx; n[1] = ny; n[2] = nz;
+     return XM(local_size_transposed)(3, n, comm,
+				      local_nx, local_x_start,
+				      local_ny, local_y_start);
+}
+
+ptrdiff_t XM(local_size_3d)(ptrdiff_t nx, ptrdiff_t ny, ptrdiff_t nz,
+			    MPI_Comm comm,
+			    ptrdiff_t *local_nx, ptrdiff_t *local_x_start)
+{
+     ptrdiff_t n[3];
+     n[0] = nx; n[1] = ny; n[2] = nz;
+     return XM(local_size)(3, n, comm, local_nx, local_x_start);
+}
+
+/*************************************************************************/
+/* Transpose API */
+
+X(plan) XM(plan_many_transpose)(ptrdiff_t nx, ptrdiff_t ny, 
+				ptrdiff_t howmany,
+				ptrdiff_t xblock, ptrdiff_t yblock,
+				R *in, R *out, 
+				MPI_Comm comm, unsigned flags)
+{
+     int n_pes;
+     XM(init)();
+
+     if (howmany < 0 || xblock < 0 || yblock < 0 ||
+	 nx <= 0 || ny <= 0) return 0;
+
+     MPI_Comm_size(comm, &n_pes);
+     if (!xblock) xblock = XM(default_block)(nx, n_pes);
+     if (!yblock) yblock = XM(default_block)(ny, n_pes);
+     if (n_pes < XM(num_blocks)(nx, xblock)
+	 || n_pes < XM(num_blocks)(ny, yblock))
+	  return 0;
+
+     return 
+	  X(mkapiplan)(FFTW_FORWARD, flags,
+		       XM(mkproblem_transpose)(nx, ny, howmany,
+					       in, out, xblock, yblock,
+					       comm, MPI_FLAGS(flags)));
+}
+
+X(plan) XM(plan_transpose)(ptrdiff_t nx, ptrdiff_t ny, R *in, R *out, 
+			   MPI_Comm comm, unsigned flags)
+			      
+{
+     return XM(plan_many_transpose)(nx, ny, 1,
+				    FFTW_MPI_DEFAULT_BLOCK,
+				    FFTW_MPI_DEFAULT_BLOCK,
+				    in, out, comm, flags);
+}
+
+/*************************************************************************/
+/* Complex DFT API */
+
+X(plan) XM(plan_guru_dft)(int rnk, const XM(ddim) *dims0,
+			  ptrdiff_t howmany,
+			  C *in, C *out,
+			  MPI_Comm comm, int sign, unsigned flags)
+{
+     int n_pes, i;
+     dtensor *sz;
+     
+     XM(init)();
+
+     if (howmany < 0 || rnk < 1) return 0;
+     for (i = 0; i < rnk; ++i)
+	  if (dims0[i].n < 1 || dims0[i].ib < 0 || dims0[i].ob < 0)
+	       return 0;
+
+     MPI_Comm_size(comm, &n_pes);
+     sz = default_sz(rnk, dims0, n_pes, 0);
+
+     if (XM(num_blocks_total)(sz, IB) > n_pes
+	 || XM(num_blocks_total)(sz, OB) > n_pes) {
+	  XM(dtensor_destroy)(sz);
+	  return 0;
+     }
+
+     return
+          X(mkapiplan)(sign, flags,
+                       XM(mkproblem_dft_d)(sz, howmany,
+					   (R *) in, (R *) out,
+					   comm, sign, 
+					   MPI_FLAGS(flags)));
+}
+
+X(plan) XM(plan_many_dft)(int rnk, const ptrdiff_t *n,
+			  ptrdiff_t howmany,
+			  ptrdiff_t iblock, ptrdiff_t oblock,
+			  C *in, C *out,
+			  MPI_Comm comm, int sign, unsigned flags)
+{
+     XM(ddim) *dims = simple_dims(rnk, n);
+     X(plan) pln;
+
+     if (rnk == 1) {
+	  dims[0].ib = iblock;
+	  dims[0].ob = oblock;
+     }
+     else if (rnk > 1) {
+	  dims[0 != (flags & FFTW_MPI_TRANSPOSED_IN)].ib = iblock;
+	  dims[0 != (flags & FFTW_MPI_TRANSPOSED_OUT)].ob = oblock;
+     }
+
+     pln = XM(plan_guru_dft)(rnk,dims,howmany, in,out, comm, sign, flags);
+     X(ifree)(dims);
+     return pln;
+}
+
+X(plan) XM(plan_dft)(int rnk, const ptrdiff_t *n, C *in, C *out,
+		     MPI_Comm comm, int sign, unsigned flags)
+{
+     return XM(plan_many_dft)(rnk, n, 1,
+			      FFTW_MPI_DEFAULT_BLOCK,
+			      FFTW_MPI_DEFAULT_BLOCK,
+			      in, out, comm, sign, flags);
+}
+
+X(plan) XM(plan_dft_1d)(ptrdiff_t nx, C *in, C *out,
+			MPI_Comm comm, int sign, unsigned flags)
+{
+     return XM(plan_dft)(1, &nx, in, out, comm, sign, flags);
+}
+
+X(plan) XM(plan_dft_2d)(ptrdiff_t nx, ptrdiff_t ny, C *in, C *out,
+			MPI_Comm comm, int sign, unsigned flags)
+{
+     ptrdiff_t n[2];
+     n[0] = nx; n[1] = ny;
+     return XM(plan_dft)(2, n, in, out, comm, sign, flags);
+}
+
+X(plan) XM(plan_dft_3d)(ptrdiff_t nx, ptrdiff_t ny, ptrdiff_t nz,
+			C *in, C *out,
+			MPI_Comm comm, int sign, unsigned flags)
+{
+     ptrdiff_t n[3];
+     n[0] = nx; n[1] = ny; n[2] = nz;
+     return XM(plan_dft)(3, n, in, out, comm, sign, flags);
+}
+
+/*************************************************************************/
+/* R2R API */
+
+X(plan) XM(plan_guru_r2r)(int rnk, const XM(ddim) *dims0,
+			  ptrdiff_t howmany,
+			  R *in, R *out,
+			  MPI_Comm comm, const X(r2r_kind) *kind,
+			  unsigned flags)
+{
+     int n_pes, i;
+     dtensor *sz;
+     rdft_kind *k;
+     X(plan) pln;
+     
+     XM(init)();
+
+     if (howmany < 0 || rnk < 1) return 0;
+     for (i = 0; i < rnk; ++i)
+	  if (dims0[i].n < 1 || dims0[i].ib < 0 || dims0[i].ob < 0)
+	       return 0;
+
+     k = X(map_r2r_kind)(rnk, kind);
+
+     MPI_Comm_size(comm, &n_pes);
+     sz = default_sz(rnk, dims0, n_pes, 0);
+
+     if (XM(num_blocks_total)(sz, IB) > n_pes
+	 || XM(num_blocks_total)(sz, OB) > n_pes) {
+	  XM(dtensor_destroy)(sz);
+	  return 0;
+     }
+
+     pln = X(mkapiplan)(0, flags,
+			XM(mkproblem_rdft_d)(sz, howmany,
+					     in, out,
+					     comm, k, MPI_FLAGS(flags)));
+     X(ifree0)(k);
+     return pln;
+}
+
+X(plan) XM(plan_many_r2r)(int rnk, const ptrdiff_t *n,
+			  ptrdiff_t howmany,
+			  ptrdiff_t iblock, ptrdiff_t oblock,
+			  R *in, R *out,
+			  MPI_Comm comm, const X(r2r_kind) *kind,
+			  unsigned flags)
+{
+     XM(ddim) *dims = simple_dims(rnk, n);
+     X(plan) pln;
+
+     if (rnk == 1) {
+	  dims[0].ib = iblock;
+	  dims[0].ob = oblock;
+     }
+     else if (rnk > 1) {
+	  dims[0 != (flags & FFTW_MPI_TRANSPOSED_IN)].ib = iblock;
+	  dims[0 != (flags & FFTW_MPI_TRANSPOSED_OUT)].ob = oblock;
+     }
+
+     pln = XM(plan_guru_r2r)(rnk,dims,howmany, in,out, comm, kind, flags);
+     X(ifree)(dims);
+     return pln;
+}
+
+X(plan) XM(plan_r2r)(int rnk, const ptrdiff_t *n, R *in, R *out,
+		     MPI_Comm comm, 
+		     const X(r2r_kind) *kind,
+		     unsigned flags)
+{
+     return XM(plan_many_r2r)(rnk, n, 1,
+			      FFTW_MPI_DEFAULT_BLOCK,
+			      FFTW_MPI_DEFAULT_BLOCK,
+			      in, out, comm, kind, flags);
+}
+
+X(plan) XM(plan_r2r_2d)(ptrdiff_t nx, ptrdiff_t ny, R *in, R *out,
+			MPI_Comm comm,
+			X(r2r_kind) kindx, X(r2r_kind) kindy,
+			unsigned flags)
+{
+     ptrdiff_t n[2];
+     X(r2r_kind) kind[2];
+     n[0] = nx; n[1] = ny;
+     kind[0] = kindx; kind[1] = kindy;
+     return XM(plan_r2r)(2, n, in, out, comm, kind, flags);
+}
+
+X(plan) XM(plan_r2r_3d)(ptrdiff_t nx, ptrdiff_t ny, ptrdiff_t nz,
+			R *in, R *out,
+			MPI_Comm comm, 
+			X(r2r_kind) kindx, X(r2r_kind) kindy,
+			X(r2r_kind) kindz,
+			unsigned flags)
+{
+     ptrdiff_t n[3];
+     X(r2r_kind) kind[3];
+     n[0] = nx; n[1] = ny; n[2] = nz;
+     kind[0] = kindx; kind[1] = kindy; kind[2] = kindz;
+     return XM(plan_r2r)(3, n, in, out, comm, kind, flags);
+}
+
+/*************************************************************************/
+/* R2C/C2R API */
+
+static X(plan) plan_guru_rdft2(int rnk, const XM(ddim) *dims0,
+			       ptrdiff_t howmany,
+			       R *r, C *c,
+			       MPI_Comm comm, rdft_kind kind, unsigned flags)
+{
+     int n_pes, i;
+     dtensor *sz;
+     R *cr = (R *) c;
+     
+     XM(init)();
+
+     if (howmany < 0 || rnk < 2) return 0;
+     for (i = 0; i < rnk; ++i)
+	  if (dims0[i].n < 1 || dims0[i].ib < 0 || dims0[i].ob < 0)
+	       return 0;
+
+     MPI_Comm_size(comm, &n_pes);
+     sz = default_sz(rnk, dims0, n_pes, 1);
+
+     sz->dims[rnk-1].n = dims0[rnk-1].n / 2 + 1;
+     if (XM(num_blocks_total)(sz, IB) > n_pes
+	 || XM(num_blocks_total)(sz, OB) > n_pes) {
+	  XM(dtensor_destroy)(sz);
+	  return 0;
+     }
+     sz->dims[rnk-1].n = dims0[rnk-1].n;
+
+     if (kind == R2HC)
+	  return X(mkapiplan)(0, flags,
+			      XM(mkproblem_rdft2_d)(sz, howmany,
+						    r, cr, comm, R2HC, 
+						    MPI_FLAGS(flags)));
+     else
+	  return X(mkapiplan)(0, flags,
+			      XM(mkproblem_rdft2_d)(sz, howmany,
+						    cr, r, comm, HC2R, 
+						    MPI_FLAGS(flags)));
+}
+
+X(plan) XM(plan_many_dft_r2c)(int rnk, const ptrdiff_t *n,
+			  ptrdiff_t howmany,
+			  ptrdiff_t iblock, ptrdiff_t oblock,
+			  R *in, C *out,
+			  MPI_Comm comm, unsigned flags)
+{
+     XM(ddim) *dims = simple_dims(rnk, n);
+     X(plan) pln;
+
+     if (rnk == 1) {
+	  dims[0].ib = iblock;
+	  dims[0].ob = oblock;
+     }
+     else if (rnk > 1) {
+	  dims[0 != (flags & FFTW_MPI_TRANSPOSED_IN)].ib = iblock;
+	  dims[0 != (flags & FFTW_MPI_TRANSPOSED_OUT)].ob = oblock;
+     }
+
+     pln = plan_guru_rdft2(rnk,dims,howmany, in,out, comm, R2HC, flags);
+     X(ifree)(dims);
+     return pln;
+}
+
+X(plan) XM(plan_many_dft_c2r)(int rnk, const ptrdiff_t *n,
+			  ptrdiff_t howmany,
+			  ptrdiff_t iblock, ptrdiff_t oblock,
+			  C *in, R *out,
+			  MPI_Comm comm, unsigned flags)
+{
+     XM(ddim) *dims = simple_dims(rnk, n);
+     X(plan) pln;
+
+     if (rnk == 1) {
+	  dims[0].ib = iblock;
+	  dims[0].ob = oblock;
+     }
+     else if (rnk > 1) {
+	  dims[0 != (flags & FFTW_MPI_TRANSPOSED_IN)].ib = iblock;
+	  dims[0 != (flags & FFTW_MPI_TRANSPOSED_OUT)].ob = oblock;
+     }
+
+     pln = plan_guru_rdft2(rnk,dims,howmany, out,in, comm, HC2R, flags);
+     X(ifree)(dims);
+     return pln;
+}
+
+X(plan) XM(plan_dft_r2c)(int rnk, const ptrdiff_t *n, R *in, C *out,
+		     MPI_Comm comm, unsigned flags)
+{
+     return XM(plan_many_dft_r2c)(rnk, n, 1,
+			      FFTW_MPI_DEFAULT_BLOCK,
+			      FFTW_MPI_DEFAULT_BLOCK,
+			      in, out, comm, flags);
+}
+
+X(plan) XM(plan_dft_r2c_2d)(ptrdiff_t nx, ptrdiff_t ny, R *in, C *out,
+			MPI_Comm comm, unsigned flags)
+{
+     ptrdiff_t n[2];
+     n[0] = nx; n[1] = ny;
+     return XM(plan_dft_r2c)(2, n, in, out, comm, flags);
+}
+
+X(plan) XM(plan_dft_r2c_3d)(ptrdiff_t nx, ptrdiff_t ny, ptrdiff_t nz,
+			R *in, C *out, MPI_Comm comm, unsigned flags)
+{
+     ptrdiff_t n[3];
+     n[0] = nx; n[1] = ny; n[2] = nz;
+     return XM(plan_dft_r2c)(3, n, in, out, comm, flags);
+}
+
+X(plan) XM(plan_dft_c2r)(int rnk, const ptrdiff_t *n, C *in, R *out,
+		     MPI_Comm comm, unsigned flags)
+{
+     return XM(plan_many_dft_c2r)(rnk, n, 1,
+			      FFTW_MPI_DEFAULT_BLOCK,
+			      FFTW_MPI_DEFAULT_BLOCK,
+			      in, out, comm, flags);
+}
+
+X(plan) XM(plan_dft_c2r_2d)(ptrdiff_t nx, ptrdiff_t ny, C *in, R *out,
+			MPI_Comm comm, unsigned flags)
+{
+     ptrdiff_t n[2];
+     n[0] = nx; n[1] = ny;
+     return XM(plan_dft_c2r)(2, n, in, out, comm, flags);
+}
+
+X(plan) XM(plan_dft_c2r_3d)(ptrdiff_t nx, ptrdiff_t ny, ptrdiff_t nz,
+			C *in, R *out, MPI_Comm comm, unsigned flags)
+{
+     ptrdiff_t n[3];
+     n[0] = nx; n[1] = ny; n[2] = nz;
+     return XM(plan_dft_c2r)(3, n, in, out, comm, flags);
+}
+
+/*************************************************************************/
+/* New-array execute functions */
+
+void XM(execute_dft)(const X(plan) p, C *in, C *out) {
+     /* internally, MPI plans are just rdft plans */
+     X(execute_r2r)(p, (R*) in, (R*) out);
+}
+
+void XM(execute_dft_r2c)(const X(plan) p, R *in, C *out) {
+     /* internally, MPI plans are just rdft plans */
+     X(execute_r2r)(p, in, (R*) out);
+}
+
+void XM(execute_dft_c2r)(const X(plan) p, C *in, R *out) {
+     /* internally, MPI plans are just rdft plans */
+     X(execute_r2r)(p, (R*) in, out);
+}
+
+void XM(execute_r2r)(const X(plan) p, R *in, R *out) {
+     /* internally, MPI plans are just rdft plans */
+     X(execute_r2r)(p, in, out);
+}