diff src/fftw-3.3.3/libbench2/verify-dft.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/libbench2/verify-dft.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,177 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+
+#include "verify.h"
+
+/* copy A into B, using output stride of A and input stride of B */
+typedef struct {
+     dotens2_closure k;
+     R *ra; R *ia;
+     R *rb; R *ib;
+     int scalea, scaleb;
+} cpy_closure;
+
+static void cpy0(dotens2_closure *k_, 
+		 int indxa, int ondxa, int indxb, int ondxb)
+{
+     cpy_closure *k = (cpy_closure *)k_;
+     k->rb[indxb * k->scaleb] = k->ra[ondxa * k->scalea];
+     k->ib[indxb * k->scaleb] = k->ia[ondxa * k->scalea];
+     UNUSED(indxa); UNUSED(ondxb);
+}
+
+static void cpy(R *ra, R *ia, const bench_tensor *sza, int scalea,
+		R *rb, R *ib, const bench_tensor *szb, int scaleb)
+{
+     cpy_closure k;
+     k.k.apply = cpy0;
+     k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib;
+     k.scalea = scalea; k.scaleb = scaleb;
+     bench_dotens2(sza, szb, &k.k);
+}
+
+typedef struct {
+     dofft_closure k;
+     bench_problem *p;
+} dofft_dft_closure;
+
+static void dft_apply(dofft_closure *k_, bench_complex *in, bench_complex *out)
+{
+     dofft_dft_closure *k = (dofft_dft_closure *)k_;
+     bench_problem *p = k->p;
+     bench_tensor *totalsz, *pckdsz;
+     bench_tensor *totalsz_swap, *pckdsz_swap;
+     bench_real *ri, *ii, *ro, *io;
+     int totalscale;
+
+     totalsz = tensor_append(p->vecsz, p->sz);
+     pckdsz = verify_pack(totalsz, 2);
+     ri = (bench_real *) p->in;
+     ro = (bench_real *) p->out;
+
+     totalsz_swap = tensor_copy_swapio(totalsz);
+     pckdsz_swap = tensor_copy_swapio(pckdsz);
+
+     /* confusion: the stride is the distance between complex elements
+	when using interleaved format, but it is the distance between
+	real elements when using split format */
+     if (p->split) {
+	  ii = p->ini ? (bench_real *) p->ini : ri + p->iphyssz;
+	  io = p->outi ? (bench_real *) p->outi : ro + p->ophyssz;
+	  totalscale = 1;
+     } else {
+	  ii = p->ini ? (bench_real *) p->ini : ri + 1;
+	  io = p->outi ? (bench_real *) p->outi : ro + 1;
+	  totalscale = 2;
+     }
+
+     cpy(&c_re(in[0]), &c_im(in[0]), pckdsz, 1,
+	    ri, ii, totalsz, totalscale);
+     after_problem_ccopy_from(p, ri, ii);
+     doit(1, p);
+     after_problem_ccopy_to(p, ro, io);
+     if (k->k.recopy_input)
+	  cpy(ri, ii, totalsz_swap, totalscale,
+	      &c_re(in[0]), &c_im(in[0]), pckdsz_swap, 1);
+     cpy(ro, io, totalsz, totalscale,
+	 &c_re(out[0]), &c_im(out[0]), pckdsz, 1);
+
+     tensor_destroy(totalsz);
+     tensor_destroy(pckdsz);
+     tensor_destroy(totalsz_swap);
+     tensor_destroy(pckdsz_swap);
+}
+
+void verify_dft(bench_problem *p, int rounds, double tol, errors *e)
+{
+     C *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
+     int n, vecn, N;
+     dofft_dft_closure k;
+
+     BENCH_ASSERT(p->kind == PROBLEM_COMPLEX);
+
+     k.k.apply = dft_apply;
+     k.k.recopy_input = 0;
+     k.p = p;
+
+     if (rounds == 0)
+	  rounds = 20;  /* default value */
+
+     n = tensor_sz(p->sz);
+     vecn = tensor_sz(p->vecsz);
+     N = n * vecn;
+
+     inA = (C *) bench_malloc(N * sizeof(C));
+     inB = (C *) bench_malloc(N * sizeof(C));
+     inC = (C *) bench_malloc(N * sizeof(C));
+     outA = (C *) bench_malloc(N * sizeof(C));
+     outB = (C *) bench_malloc(N * sizeof(C));
+     outC = (C *) bench_malloc(N * sizeof(C));
+     tmp = (C *) bench_malloc(N * sizeof(C));
+
+     e->i = impulse(&k.k, n, vecn, inA, inB, inC, outA, outB, outC, 
+		    tmp, rounds, tol);
+     e->l = linear(&k.k, 0, N, inA, inB, inC, outA, outB, outC,
+		   tmp, rounds, tol);
+
+     e->s = 0.0;
+     e->s = dmax(e->s, tf_shift(&k.k, 0, p->sz, n, vecn, p->sign,
+				inA, inB, outA, outB, 
+				tmp, rounds, tol, TIME_SHIFT));
+     e->s = dmax(e->s, tf_shift(&k.k, 0, p->sz, n, vecn, p->sign,
+				inA, inB, outA, outB, 
+				tmp, rounds, tol, FREQ_SHIFT));
+
+     if (!p->in_place && !p->destroy_input)
+	  preserves_input(&k.k, 0, N, inA, inB, outB, rounds);
+
+     bench_free(tmp);
+     bench_free(outC);
+     bench_free(outB);
+     bench_free(outA);
+     bench_free(inC);
+     bench_free(inB);
+     bench_free(inA);
+}
+
+
+void accuracy_dft(bench_problem *p, int rounds, int impulse_rounds,
+		  double t[6])
+{
+     dofft_dft_closure k;
+     int n;
+     C *a, *b;
+
+     BENCH_ASSERT(p->kind == PROBLEM_COMPLEX);
+     BENCH_ASSERT(p->sz->rnk == 1);
+     BENCH_ASSERT(p->vecsz->rnk == 0);
+
+     k.k.apply = dft_apply;
+     k.k.recopy_input = 0;
+     k.p = p;
+     n = tensor_sz(p->sz);
+
+     a = (C *) bench_malloc(n * sizeof(C));
+     b = (C *) bench_malloc(n * sizeof(C));
+     accuracy_test(&k.k, 0, p->sign, n, a, b, rounds, impulse_rounds, t);
+     bench_free(b);
+     bench_free(a);
+}