Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/genfft/schedule.ml @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/genfft/schedule.ml Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,236 @@ +(* + * Copyright (c) 1997-1999 Massachusetts Institute of Technology + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + *) + +(* This file contains the instruction scheduler, which finds an + efficient ordering for a given list of instructions. + + The scheduler analyzes the DAG (directed acyclic graph) formed by + the instruction dependencies, and recursively partitions it. The + resulting schedule data structure expresses a "good" ordering + and structure for the computation. + + The scheduler makes use of utilties in Dag and other packages to + manipulate the Dag and the instruction list. *) + +open Dag +(************************************************* + * Dag scheduler + *************************************************) +let to_assignment node = (Expr.Assign (node.assigned, node.expression)) +let makedag l = Dag.makedag + (List.map (function Expr.Assign (v, x) -> (v, x)) l) + +let return x = x +let has_color c n = (n.color = c) +let set_color c n = (n.color <- c) +let has_either_color c1 c2 n = (n.color = c1 || n.color = c2) + +let infinity = 100000 + +let cc dag inputs = + begin + Dag.for_all dag (fun node -> + node.label <- infinity); + + (match inputs with + a :: _ -> bfs dag a 0 + | _ -> failwith "connected"); + + return + ((List.map to_assignment (List.filter (fun n -> n.label < infinity) + (Dag.to_list dag))), + (List.map to_assignment (List.filter (fun n -> n.label == infinity) + (Dag.to_list dag)))) + end + +let rec connected_components alist = + let dag = makedag alist in + let inputs = + List.filter (fun node -> Util.null node.predecessors) + (Dag.to_list dag) in + match cc dag inputs with + (a, []) -> [a] + | (a, b) -> a :: connected_components b + +let single_load node = + match (node.input_variables, node.predecessors) with + ([x], []) -> + Variable.is_constant x || + (!Magic.locations_are_special && Variable.is_locative x) + | _ -> false + +let loads_locative node = + match (node.input_variables, node.predecessors) with + | ([x], []) -> Variable.is_locative x + | _ -> false + +let partition alist = + let dag = makedag alist in + let dag' = Dag.to_list dag in + let inputs = + List.filter (fun node -> Util.null node.predecessors) dag' + and outputs = + List.filter (fun node -> Util.null node.successors) dag' + and special_inputs = List.filter single_load dag' in + begin + + let c = match !Magic.schedule_type with + | 1 -> RED; (* all nodes in the input partition *) + | -1 -> BLUE; (* all nodes in the output partition *) + | _ -> BLACK; (* node color determined by bisection algorithm *) + in Dag.for_all dag (fun node -> node.color <- c); + + Util.for_list inputs (set_color RED); + + (* + The special inputs are those input nodes that load a single + location or twiddle factor. Special inputs can end up either + in the blue or in the red part. These inputs are special + because they inherit a color from their neighbors: If a red + node needs a special input, the special input becomes red, but + if all successors of a special input are blue, the special + input becomes blue. Outputs are always blue, whether they be + special or not. + + Because of the processing of special inputs, however, the final + partition might end up being composed only of blue nodes (which + is incorrect). In this case we manually reset all inputs + (whether special or not) to be red. + *) + + Util.for_list special_inputs (set_color YELLOW); + + Util.for_list outputs (set_color BLUE); + + let rec loopi donep = + match (List.filter + (fun node -> (has_color BLACK node) && + List.for_all (has_either_color RED YELLOW) node.predecessors) + dag') with + [] -> if (donep) then () else loopo true + | i -> + begin + Util.for_list i (fun node -> + begin + set_color RED node; + Util.for_list node.predecessors (set_color RED); + end); + loopo false; + end + + and loopo donep = + match (List.filter + (fun node -> (has_either_color BLACK YELLOW node) && + List.for_all (has_color BLUE) node.successors) + dag') with + [] -> if (donep) then () else loopi true + | o -> + begin + Util.for_list o (set_color BLUE); + loopi false; + end + + in loopi false; + + (* fix the partition if it is incorrect *) + if not (List.exists (has_color RED) dag') then + Util.for_list inputs (set_color RED); + + return + ((List.map to_assignment (List.filter (has_color RED) dag')), + (List.map to_assignment (List.filter (has_color BLUE) dag'))) + end + +type schedule = + Done + | Instr of Expr.assignment + | Seq of (schedule * schedule) + | Par of schedule list + + + +(* produce a sequential schedule determined by the user *) +let rec sequentially = function + [] -> Done + | a :: b -> Seq (Instr a, sequentially b) + +let schedule = + let rec schedule_alist = function + | [] -> Done + | [a] -> Instr a + | alist -> match connected_components alist with + | ([a]) -> schedule_connected a + | l -> Par (List.map schedule_alist l) + + and schedule_connected alist = + match partition alist with + | (a, b) -> Seq (schedule_alist a, schedule_alist b) + + in fun x -> + let () = Util.info "begin schedule" in + let res = schedule_alist x in + let () = Util.info "end schedule" in + res + + +(* partition a dag into two parts: + + 1) the set of loads from locatives and their successors, + 2) all other nodes + + This step separates the ``body'' of the dag, which computes the + actual fft, from the ``precomputations'' part, which computes e.g. + twiddle factors. +*) +let partition_precomputations alist = + let dag = makedag alist in + let dag' = Dag.to_list dag in + let loads = List.filter loads_locative dag' in + begin + + Dag.for_all dag (set_color BLUE); + Util.for_list loads (set_color RED); + + let rec loop () = + match (List.filter + (fun node -> (has_color RED node) && + List.exists (has_color BLUE) node.successors) + dag') with + [] -> () + | i -> + begin + Util.for_list i + (fun node -> + Util.for_list node.successors (set_color RED)); + loop () + end + + in loop (); + + return + ((List.map to_assignment (List.filter (has_color BLUE) dag')), + (List.map to_assignment (List.filter (has_color RED) dag'))) + end + +let isolate_precomputations_and_schedule alist = + let (a, b) = partition_precomputations alist in + Seq (schedule a, schedule b) +