Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/genfft/conv.ml @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/genfft/conv.ml Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,130 @@ +(* + * Copyright (c) 1997-1999 Massachusetts Institute of Technology + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * +*) + +open Complex +open Util + +let polyphase m a ph i = a (m * i + ph) + +let rec divmod n i = + if (i < 0) then + let (a, b) = divmod n (i + n) + in (a - 1, b) + else (i / n, i mod n) + +let unpolyphase m a i = let (x, y) = divmod m i in a y x + +let lift2 f a b i = f (a i) (b i) + +(* convolution of signals A and B *) +let rec conv na a nb b = + let rec naive na a nb b i = + sigma 0 na (fun j -> (a j) @* (b (i - j))) + + and recur na a nb b = + if (na <= 1 || nb <= 1) then + naive na a nb b + else + let p = polyphase 2 in + let ee = conv (na - na / 2) (p a 0) (nb - nb / 2) (p b 0) + and eo = conv (na - na / 2) (p a 0) (nb / 2) (p b 1) + and oe = conv (na / 2) (p a 1) (nb - nb / 2) (p b 0) + and oo = conv (na / 2) (p a 1) (nb / 2) (p b 1) in + unpolyphase 2 (function + 0 -> fun i -> (ee i) @+ (oo (i - 1)) + | 1 -> fun i -> (eo i) @+ (oe i) + | _ -> failwith "recur") + + + (* Karatsuba variant 1: (a+bx)(c+dx) = (ac+bdxx)+((a+b)(c+d)-ac-bd)x *) + and karatsuba1 na a nb b = + let p = polyphase 2 in + let ae = p a 0 and nae = na - na / 2 + and ao = p a 1 and nao = na / 2 + and be = p b 0 and nbe = nb - nb / 2 + and bo = p b 1 and nbo = nb / 2 in + let ae = infinite nae ae and ao = infinite nao ao + and be = infinite nbe be and bo = infinite nbo bo in + let aeo = lift2 (@+) ae ao and naeo = nae + and beo = lift2 (@+) be bo and nbeo = nbe in + let ee = conv nae ae nbe be + and oo = conv nao ao nbo bo + and eoeo = conv naeo aeo nbeo beo in + + let q = function + 0 -> fun i -> (ee i) @+ (oo (i - 1)) + | 1 -> fun i -> (eoeo i) @- ((ee i) @+ (oo i)) + | _ -> failwith "karatsuba1" in + unpolyphase 2 q + + (* Karatsuba variant 2: + (a+bx)(c+dx) = ((a+b)c-b(c-dxx))+x((a+b)c-a(c-d)) *) + and karatsuba2 na a nb b = + let p = polyphase 2 in + let ae = p a 0 and nae = na - na / 2 + and ao = p a 1 and nao = na / 2 + and be = p b 0 and nbe = nb - nb / 2 + and bo = p b 1 and nbo = nb / 2 in + let ae = infinite nae ae and ao = infinite nao ao + and be = infinite nbe be and bo = infinite nbo bo in + + let c1 = conv nae (lift2 (@+) ae ao) nbe be + and c2 = conv nao ao (nbo + 1) (fun i -> be i @- bo (i - 1)) + and c3 = conv nae ae nbe (lift2 (@-) be bo) in + + let q = function + 0 -> lift2 (@-) c1 c2 + | 1 -> lift2 (@-) c1 c3 + | _ -> failwith "karatsuba2" in + unpolyphase 2 q + + and karatsuba na a nb b = + let m = na + nb - 1 in + if (m < !Magic.karatsuba_min) then + recur na a nb b + else + match !Magic.karatsuba_variant with + 1 -> karatsuba1 na a nb b + | 2 -> karatsuba2 na a nb b + | _ -> failwith "unknown karatsuba variant" + + and via_circular na a nb b = + let m = na + nb - 1 in + if (m < !Magic.circular_min) then + karatsuba na a nb b + else + let rec find_min n = if n >= m then n else find_min (2 * n) in + circular (find_min 1) a b + + in + let a = infinite na a and b = infinite nb b in + let res = array (na + nb - 1) (via_circular na a nb b) in + infinite (na + nb - 1) res + +and circular n a b = + let via_dft n a b = + let fa = Fft.dft (-1) n a + and fb = Fft.dft (-1) n b + and scale = inverse_int n in + let fab i = ((fa i) @* (fb i)) @* scale in + Fft.dft 1 n fab + + in via_dft n a b