diff src/fftw-3.3.3/doc/html/Multi_002ddimensional-MPI-DFTs-of-Real-Data.html @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/doc/html/Multi_002ddimensional-MPI-DFTs-of-Real-Data.html	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,158 @@
+<html lang="en">
+<head>
+<title>Multi-dimensional MPI DFTs of Real Data - FFTW 3.3.3</title>
+<meta http-equiv="Content-Type" content="text/html">
+<meta name="description" content="FFTW 3.3.3">
+<meta name="generator" content="makeinfo 4.13">
+<link title="Top" rel="start" href="index.html#Top">
+<link rel="up" href="Distributed_002dmemory-FFTW-with-MPI.html#Distributed_002dmemory-FFTW-with-MPI" title="Distributed-memory FFTW with MPI">
+<link rel="prev" href="MPI-Data-Distribution.html#MPI-Data-Distribution" title="MPI Data Distribution">
+<link rel="next" href="Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms.html#Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms" title="Other Multi-dimensional Real-data MPI Transforms">
+<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
+<!--
+This manual is for FFTW
+(version 3.3.3, 25 November 2012).
+
+Copyright (C) 2003 Matteo Frigo.
+
+Copyright (C) 2003 Massachusetts Institute of Technology.
+
+     Permission is granted to make and distribute verbatim copies of
+     this manual provided the copyright notice and this permission
+     notice are preserved on all copies.
+
+     Permission is granted to copy and distribute modified versions of
+     this manual under the conditions for verbatim copying, provided
+     that the entire resulting derived work is distributed under the
+     terms of a permission notice identical to this one.
+
+     Permission is granted to copy and distribute translations of this
+     manual into another language, under the above conditions for
+     modified versions, except that this permission notice may be
+     stated in a translation approved by the Free Software Foundation.
+   -->
+<meta http-equiv="Content-Style-Type" content="text/css">
+<style type="text/css"><!--
+  pre.display { font-family:inherit }
+  pre.format  { font-family:inherit }
+  pre.smalldisplay { font-family:inherit; font-size:smaller }
+  pre.smallformat  { font-family:inherit; font-size:smaller }
+  pre.smallexample { font-size:smaller }
+  pre.smalllisp    { font-size:smaller }
+  span.sc    { font-variant:small-caps }
+  span.roman { font-family:serif; font-weight:normal; } 
+  span.sansserif { font-family:sans-serif; font-weight:normal; } 
+--></style>
+</head>
+<body>
+<div class="node">
+<a name="Multi-dimensional-MPI-DFTs-of-Real-Data"></a>
+<a name="Multi_002ddimensional-MPI-DFTs-of-Real-Data"></a>
+<p>
+Next:&nbsp;<a rel="next" accesskey="n" href="Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms.html#Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms">Other Multi-dimensional Real-data MPI Transforms</a>,
+Previous:&nbsp;<a rel="previous" accesskey="p" href="MPI-Data-Distribution.html#MPI-Data-Distribution">MPI Data Distribution</a>,
+Up:&nbsp;<a rel="up" accesskey="u" href="Distributed_002dmemory-FFTW-with-MPI.html#Distributed_002dmemory-FFTW-with-MPI">Distributed-memory FFTW with MPI</a>
+<hr>
+</div>
+
+<h3 class="section">6.5 Multi-dimensional MPI DFTs of Real Data</h3>
+
+<p>FFTW's MPI interface also supports multi-dimensional DFTs of real
+data, similar to the serial r2c and c2r interfaces.  (Parallel
+one-dimensional real-data DFTs are not currently supported; you must
+use a complex transform and set the imaginary parts of the inputs to
+zero.)
+
+   <p>The key points to understand for r2c and c2r MPI transforms (compared
+to the MPI complex DFTs or the serial r2c/c2r transforms), are:
+
+     <ul>
+<li>Just as for serial transforms, r2c/c2r DFTs transform n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub> real
+data to/from n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;(n<sub>d-1</sub>/2 + 1) complex data: the last dimension of the
+complex data is cut in half (rounded down), plus one.  As for the
+serial transforms, the sizes you pass to the &lsquo;<samp><span class="samp">plan_dft_r2c</span></samp>&rsquo; and
+&lsquo;<samp><span class="samp">plan_dft_c2r</span></samp>&rsquo; are the n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub> dimensions of the real data.
+
+     <li><a name="index-padding-386"></a>Although the real data is <em>conceptually</em> n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub>, it is
+<em>physically</em> stored as an n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;[2&nbsp;(n<sub>d-1</sub>/2 + 1)] array, where the last
+dimension has been <em>padded</em> to make it the same size as the
+complex output.  This is much like the in-place serial r2c/c2r
+interface (see <a href="Multi_002dDimensional-DFTs-of-Real-Data.html#Multi_002dDimensional-DFTs-of-Real-Data">Multi-Dimensional DFTs of Real Data</a>), except that
+in MPI the padding is required even for out-of-place data.  The extra
+padding numbers are ignored by FFTW (they are <em>not</em> like
+zero-padding the transform to a larger size); they are only used to
+determine the data layout.
+
+     <li><a name="index-data-distribution-387"></a>The data distribution in MPI for <em>both</em> the real and complex data
+is determined by the shape of the <em>complex</em> data.  That is, you
+call the appropriate &lsquo;<samp><span class="samp">local size</span></samp>&rsquo; function for the n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;(n<sub>d-1</sub>/2 + 1)
+
+     <p>complex data, and then use the <em>same</em> distribution for the real
+data except that the last complex dimension is replaced by a (padded)
+real dimension of twice the length.
+
+   </ul>
+
+   <p>For example suppose we are performing an out-of-place r2c transform of
+L&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;N real data [padded to L&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;2(N/2+1)],
+resulting in L&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;N/2+1 complex data.  Similar to the
+example in <a href="2d-MPI-example.html#g_t2d-MPI-example">2d MPI example</a>, we might do something like:
+
+<pre class="example">     #include &lt;fftw3-mpi.h&gt;
+     
+     int main(int argc, char **argv)
+     {
+         const ptrdiff_t L = ..., M = ..., N = ...;
+         fftw_plan plan;
+         double *rin;
+         fftw_complex *cout;
+         ptrdiff_t alloc_local, local_n0, local_0_start, i, j, k;
+     
+         MPI_Init(&amp;argc, &amp;argv);
+         fftw_mpi_init();
+     
+         /* <span class="roman">get local data size and allocate</span> */
+         alloc_local = fftw_mpi_local_size_3d(L, M, N/2+1, MPI_COMM_WORLD,
+                                              &amp;local_n0, &amp;local_0_start);
+         rin = fftw_alloc_real(2 * alloc_local);
+         cout = fftw_alloc_complex(alloc_local);
+     
+         /* <span class="roman">create plan for out-of-place r2c DFT</span> */
+         plan = fftw_mpi_plan_dft_r2c_3d(L, M, N, rin, cout, MPI_COMM_WORLD,
+                                         FFTW_MEASURE);
+     
+         /* <span class="roman">initialize rin to some function</span> my_func(x,y,z) */
+         for (i = 0; i &lt; local_n0; ++i)
+            for (j = 0; j &lt; M; ++j)
+              for (k = 0; k &lt; N; ++k)
+            rin[(i*M + j) * (2*(N/2+1)) + k] = my_func(local_0_start+i, j, k);
+     
+         /* <span class="roman">compute transforms as many times as desired</span> */
+         fftw_execute(plan);
+     
+         fftw_destroy_plan(plan);
+     
+         MPI_Finalize();
+     }
+</pre>
+   <p><a name="index-fftw_005falloc_005freal-388"></a><a name="index-row_002dmajor-389"></a>Note that we allocated <code>rin</code> using <code>fftw_alloc_real</code> with an
+argument of <code>2 * alloc_local</code>: since <code>alloc_local</code> is the
+number of <em>complex</em> values to allocate, the number of <em>real</em>
+values is twice as many.  The <code>rin</code> array is then
+local_n0&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;2(N/2+1) in row-major order, so its
+<code>(i,j,k)</code> element is at the index <code>(i*M + j) * (2*(N/2+1)) +
+k</code> (see <a href="Multi_002ddimensional-Array-Format.html#Multi_002ddimensional-Array-Format">Multi-dimensional Array Format</a>).
+
+   <p><a name="index-transpose-390"></a><a name="index-FFTW_005fTRANSPOSED_005fOUT-391"></a><a name="index-FFTW_005fTRANSPOSED_005fIN-392"></a>As for the complex transforms, improved performance can be obtained by
+specifying that the output is the transpose of the input or vice versa
+(see <a href="Transposed-distributions.html#Transposed-distributions">Transposed distributions</a>).  In our L&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;N r2c
+example, including <code>FFTW_TRANSPOSED_OUT</code> in the flags means that
+the input would be a padded L&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;2(N/2+1) real array
+distributed over the <code>L</code> dimension, while the output would be a
+M&nbsp;&times;&nbsp;L&nbsp;&times;&nbsp;N/2+1 complex array distributed over the <code>M</code>
+dimension.  To perform the inverse c2r transform with the same data
+distributions, you would use the <code>FFTW_TRANSPOSED_IN</code> flag.
+
+<!--  -->
+   </body></html>
+