diff src/fftw-3.3.3/doc/html/MPI-Plan-Creation.html @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/doc/html/MPI-Plan-Creation.html	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,253 @@
+<html lang="en">
+<head>
+<title>MPI Plan Creation - FFTW 3.3.3</title>
+<meta http-equiv="Content-Type" content="text/html">
+<meta name="description" content="FFTW 3.3.3">
+<meta name="generator" content="makeinfo 4.13">
+<link title="Top" rel="start" href="index.html#Top">
+<link rel="up" href="FFTW-MPI-Reference.html#FFTW-MPI-Reference" title="FFTW MPI Reference">
+<link rel="prev" href="MPI-Data-Distribution-Functions.html#MPI-Data-Distribution-Functions" title="MPI Data Distribution Functions">
+<link rel="next" href="MPI-Wisdom-Communication.html#MPI-Wisdom-Communication" title="MPI Wisdom Communication">
+<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
+<!--
+This manual is for FFTW
+(version 3.3.3, 25 November 2012).
+
+Copyright (C) 2003 Matteo Frigo.
+
+Copyright (C) 2003 Massachusetts Institute of Technology.
+
+     Permission is granted to make and distribute verbatim copies of
+     this manual provided the copyright notice and this permission
+     notice are preserved on all copies.
+
+     Permission is granted to copy and distribute modified versions of
+     this manual under the conditions for verbatim copying, provided
+     that the entire resulting derived work is distributed under the
+     terms of a permission notice identical to this one.
+
+     Permission is granted to copy and distribute translations of this
+     manual into another language, under the above conditions for
+     modified versions, except that this permission notice may be
+     stated in a translation approved by the Free Software Foundation.
+   -->
+<meta http-equiv="Content-Style-Type" content="text/css">
+<style type="text/css"><!--
+  pre.display { font-family:inherit }
+  pre.format  { font-family:inherit }
+  pre.smalldisplay { font-family:inherit; font-size:smaller }
+  pre.smallformat  { font-family:inherit; font-size:smaller }
+  pre.smallexample { font-size:smaller }
+  pre.smalllisp    { font-size:smaller }
+  span.sc    { font-variant:small-caps }
+  span.roman { font-family:serif; font-weight:normal; } 
+  span.sansserif { font-family:sans-serif; font-weight:normal; } 
+--></style>
+</head>
+<body>
+<div class="node">
+<a name="MPI-Plan-Creation"></a>
+<p>
+Next:&nbsp;<a rel="next" accesskey="n" href="MPI-Wisdom-Communication.html#MPI-Wisdom-Communication">MPI Wisdom Communication</a>,
+Previous:&nbsp;<a rel="previous" accesskey="p" href="MPI-Data-Distribution-Functions.html#MPI-Data-Distribution-Functions">MPI Data Distribution Functions</a>,
+Up:&nbsp;<a rel="up" accesskey="u" href="FFTW-MPI-Reference.html#FFTW-MPI-Reference">FFTW MPI Reference</a>
+<hr>
+</div>
+
+<h4 class="subsection">6.12.5 MPI Plan Creation</h4>
+
+<h5 class="subsubheading">Complex-data MPI DFTs</h5>
+
+<p>Plans for complex-data DFTs (see <a href="2d-MPI-example.html#g_t2d-MPI-example">2d MPI example</a>) are created by:
+
+   <p><a name="index-fftw_005fmpi_005fplan_005fdft_005f1d-461"></a><a name="index-fftw_005fmpi_005fplan_005fdft_005f2d-462"></a><a name="index-fftw_005fmpi_005fplan_005fdft_005f3d-463"></a><a name="index-fftw_005fmpi_005fplan_005fdft-464"></a><a name="index-fftw_005fmpi_005fplan_005fmany_005fdft-465"></a>
+<pre class="example">     fftw_plan fftw_mpi_plan_dft_1d(ptrdiff_t n0, fftw_complex *in, fftw_complex *out,
+                                    MPI_Comm comm, int sign, unsigned flags);
+     fftw_plan fftw_mpi_plan_dft_2d(ptrdiff_t n0, ptrdiff_t n1,
+                                    fftw_complex *in, fftw_complex *out,
+                                    MPI_Comm comm, int sign, unsigned flags);
+     fftw_plan fftw_mpi_plan_dft_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2,
+                                    fftw_complex *in, fftw_complex *out,
+                                    MPI_Comm comm, int sign, unsigned flags);
+     fftw_plan fftw_mpi_plan_dft(int rnk, const ptrdiff_t *n,
+                                 fftw_complex *in, fftw_complex *out,
+                                 MPI_Comm comm, int sign, unsigned flags);
+     fftw_plan fftw_mpi_plan_many_dft(int rnk, const ptrdiff_t *n,
+                                      ptrdiff_t howmany, ptrdiff_t block, ptrdiff_t tblock,
+                                      fftw_complex *in, fftw_complex *out,
+                                      MPI_Comm comm, int sign, unsigned flags);
+</pre>
+   <p><a name="index-MPI-communicator-466"></a><a name="index-collective-function-467"></a>These are similar to their serial counterparts (see <a href="Complex-DFTs.html#Complex-DFTs">Complex DFTs</a>)
+in specifying the dimensions, sign, and flags of the transform.  The
+<code>comm</code> argument gives an MPI communicator that specifies the set
+of processes to participate in the transform; plan creation is a
+collective function that must be called for all processes in the
+communicator.  The <code>in</code> and <code>out</code> pointers refer only to a
+portion of the overall transform data (see <a href="MPI-Data-Distribution.html#MPI-Data-Distribution">MPI Data Distribution</a>)
+as specified by the &lsquo;<samp><span class="samp">local_size</span></samp>&rsquo; functions in the previous
+section.  Unless <code>flags</code> contains <code>FFTW_ESTIMATE</code>, these
+arrays are overwritten during plan creation as for the serial
+interface.  For multi-dimensional transforms, any dimensions <code>&gt;
+1</code> are supported; for one-dimensional transforms, only composite
+(non-prime) <code>n0</code> are currently supported (unlike the serial
+FFTW).  Requesting an unsupported transform size will yield a
+<code>NULL</code> plan.  (As in the serial interface, highly composite sizes
+generally yield the best performance.)
+
+   <p><a name="index-advanced-interface-468"></a><a name="index-FFTW_005fMPI_005fDEFAULT_005fBLOCK-469"></a><a name="index-stride-470"></a>The advanced-interface <code>fftw_mpi_plan_many_dft</code> additionally
+allows you to specify the block sizes for the first dimension
+(<code>block</code>) of the n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub> input data and the first dimension
+(<code>tblock</code>) of the n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&hellip;&times;&nbsp;n<sub>d-1</sub> transposed data (at intermediate
+steps of the transform, and for the output if
+<code>FFTW_TRANSPOSED_OUT</code> is specified in <code>flags</code>).  These must
+be the same block sizes as were passed to the corresponding
+&lsquo;<samp><span class="samp">local_size</span></samp>&rsquo; function; you can pass <code>FFTW_MPI_DEFAULT_BLOCK</code>
+to use FFTW's default block size as in the basic interface.  Also, the
+<code>howmany</code> parameter specifies that the transform is of contiguous
+<code>howmany</code>-tuples rather than individual complex numbers; this
+corresponds to the same parameter in the serial advanced interface
+(see <a href="Advanced-Complex-DFTs.html#Advanced-Complex-DFTs">Advanced Complex DFTs</a>) with <code>stride = howmany</code> and
+<code>dist = 1</code>.
+
+<h5 class="subsubheading">MPI flags</h5>
+
+<p>The <code>flags</code> can be any of those for the serial FFTW
+(see <a href="Planner-Flags.html#Planner-Flags">Planner Flags</a>), and in addition may include one or more of
+the following MPI-specific flags, which improve performance at the
+cost of changing the output or input data formats.
+
+     <ul>
+<li><a name="index-FFTW_005fMPI_005fSCRAMBLED_005fOUT-471"></a><a name="index-FFTW_005fMPI_005fSCRAMBLED_005fIN-472"></a><code>FFTW_MPI_SCRAMBLED_OUT</code>, <code>FFTW_MPI_SCRAMBLED_IN</code>: valid for
+1d transforms only, these flags indicate that the output/input of the
+transform are in an undocumented &ldquo;scrambled&rdquo; order.  A forward
+<code>FFTW_MPI_SCRAMBLED_OUT</code> transform can be inverted by a backward
+<code>FFTW_MPI_SCRAMBLED_IN</code> (times the usual 1/<i>N</i> normalization). 
+See <a href="One_002ddimensional-distributions.html#One_002ddimensional-distributions">One-dimensional distributions</a>.
+
+     <li><a name="index-FFTW_005fMPI_005fTRANSPOSED_005fOUT-473"></a><a name="index-FFTW_005fMPI_005fTRANSPOSED_005fIN-474"></a><code>FFTW_MPI_TRANSPOSED_OUT</code>, <code>FFTW_MPI_TRANSPOSED_IN</code>: valid
+for multidimensional (<code>rnk &gt; 1</code>) transforms only, these flags
+specify that the output or input of an n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub> transform is
+transposed to n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&hellip;&times;&nbsp;n<sub>d-1</sub>.  See <a href="Transposed-distributions.html#Transposed-distributions">Transposed distributions</a>.
+
+   </ul>
+
+<h5 class="subsubheading">Real-data MPI DFTs</h5>
+
+<p><a name="index-r2c-475"></a>Plans for real-input/output (r2c/c2r) DFTs (see <a href="Multi_002ddimensional-MPI-DFTs-of-Real-Data.html#Multi_002ddimensional-MPI-DFTs-of-Real-Data">Multi-dimensional MPI DFTs of Real Data</a>) are created by:
+
+   <p><a name="index-fftw_005fmpi_005fplan_005fdft_005fr2c_005f2d-476"></a><a name="index-fftw_005fmpi_005fplan_005fdft_005fr2c_005f2d-477"></a><a name="index-fftw_005fmpi_005fplan_005fdft_005fr2c_005f3d-478"></a><a name="index-fftw_005fmpi_005fplan_005fdft_005fr2c-479"></a><a name="index-fftw_005fmpi_005fplan_005fdft_005fc2r_005f2d-480"></a><a name="index-fftw_005fmpi_005fplan_005fdft_005fc2r_005f2d-481"></a><a name="index-fftw_005fmpi_005fplan_005fdft_005fc2r_005f3d-482"></a><a name="index-fftw_005fmpi_005fplan_005fdft_005fc2r-483"></a>
+<pre class="example">     fftw_plan fftw_mpi_plan_dft_r2c_2d(ptrdiff_t n0, ptrdiff_t n1,
+                                        double *in, fftw_complex *out,
+                                        MPI_Comm comm, unsigned flags);
+     fftw_plan fftw_mpi_plan_dft_r2c_2d(ptrdiff_t n0, ptrdiff_t n1,
+                                        double *in, fftw_complex *out,
+                                        MPI_Comm comm, unsigned flags);
+     fftw_plan fftw_mpi_plan_dft_r2c_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2,
+                                        double *in, fftw_complex *out,
+                                        MPI_Comm comm, unsigned flags);
+     fftw_plan fftw_mpi_plan_dft_r2c(int rnk, const ptrdiff_t *n,
+                                     double *in, fftw_complex *out,
+                                     MPI_Comm comm, unsigned flags);
+     fftw_plan fftw_mpi_plan_dft_c2r_2d(ptrdiff_t n0, ptrdiff_t n1,
+                                        fftw_complex *in, double *out,
+                                        MPI_Comm comm, unsigned flags);
+     fftw_plan fftw_mpi_plan_dft_c2r_2d(ptrdiff_t n0, ptrdiff_t n1,
+                                        fftw_complex *in, double *out,
+                                        MPI_Comm comm, unsigned flags);
+     fftw_plan fftw_mpi_plan_dft_c2r_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2,
+                                        fftw_complex *in, double *out,
+                                        MPI_Comm comm, unsigned flags);
+     fftw_plan fftw_mpi_plan_dft_c2r(int rnk, const ptrdiff_t *n,
+                                     fftw_complex *in, double *out,
+                                     MPI_Comm comm, unsigned flags);
+</pre>
+   <p>Similar to the serial interface (see <a href="Real_002ddata-DFTs.html#Real_002ddata-DFTs">Real-data DFTs</a>), these
+transform logically n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub> real data to/from n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;(n<sub>d-1</sub>/2 + 1) complex
+data, representing the non-redundant half of the conjugate-symmetry
+output of a real-input DFT (see <a href="Multi_002ddimensional-Transforms.html#Multi_002ddimensional-Transforms">Multi-dimensional Transforms</a>). 
+However, the real array must be stored within a padded n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;[2&nbsp;(n<sub>d-1</sub>/2 + 1)]
+
+   <p>array (much like the in-place serial r2c transforms, but here for
+out-of-place transforms as well). Currently, only multi-dimensional
+(<code>rnk &gt; 1</code>) r2c/c2r transforms are supported (requesting a plan
+for <code>rnk = 1</code> will yield <code>NULL</code>).  As explained above
+(see <a href="Multi_002ddimensional-MPI-DFTs-of-Real-Data.html#Multi_002ddimensional-MPI-DFTs-of-Real-Data">Multi-dimensional MPI DFTs of Real Data</a>), the data
+distribution of both the real and complex arrays is given by the
+&lsquo;<samp><span class="samp">local_size</span></samp>&rsquo; function called for the dimensions of the
+<em>complex</em> array.  Similar to the other planning functions, the
+input and output arrays are overwritten when the plan is created
+except in <code>FFTW_ESTIMATE</code> mode.
+
+   <p>As for the complex DFTs above, there is an advance interface that
+allows you to manually specify block sizes and to transform contiguous
+<code>howmany</code>-tuples of real/complex numbers:
+
+   <p><a name="index-fftw_005fmpi_005fplan_005fmany_005fdft_005fr2c-484"></a><a name="index-fftw_005fmpi_005fplan_005fmany_005fdft_005fc2r-485"></a>
+<pre class="example">     fftw_plan fftw_mpi_plan_many_dft_r2c
+                   (int rnk, const ptrdiff_t *n, ptrdiff_t howmany,
+                    ptrdiff_t iblock, ptrdiff_t oblock,
+                    double *in, fftw_complex *out,
+                    MPI_Comm comm, unsigned flags);
+     fftw_plan fftw_mpi_plan_many_dft_c2r
+                   (int rnk, const ptrdiff_t *n, ptrdiff_t howmany,
+                    ptrdiff_t iblock, ptrdiff_t oblock,
+                    fftw_complex *in, double *out,
+                    MPI_Comm comm, unsigned flags);
+</pre>
+   <h5 class="subsubheading">MPI r2r transforms</h5>
+
+<p><a name="index-r2r-486"></a>There are corresponding plan-creation routines for r2r
+transforms (see <a href="More-DFTs-of-Real-Data.html#More-DFTs-of-Real-Data">More DFTs of Real Data</a>), currently supporting
+multidimensional (<code>rnk &gt; 1</code>) transforms only (<code>rnk = 1</code> will
+yield a <code>NULL</code> plan):
+
+<pre class="example">     fftw_plan fftw_mpi_plan_r2r_2d(ptrdiff_t n0, ptrdiff_t n1,
+                                    double *in, double *out,
+                                    MPI_Comm comm,
+                                    fftw_r2r_kind kind0, fftw_r2r_kind kind1,
+                                    unsigned flags);
+     fftw_plan fftw_mpi_plan_r2r_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2,
+                                    double *in, double *out,
+                                    MPI_Comm comm,
+                                    fftw_r2r_kind kind0, fftw_r2r_kind kind1, fftw_r2r_kind kind2,
+                                    unsigned flags);
+     fftw_plan fftw_mpi_plan_r2r(int rnk, const ptrdiff_t *n,
+                                 double *in, double *out,
+                                 MPI_Comm comm, const fftw_r2r_kind *kind,
+                                 unsigned flags);
+     fftw_plan fftw_mpi_plan_many_r2r(int rnk, const ptrdiff_t *n,
+                                      ptrdiff_t iblock, ptrdiff_t oblock,
+                                      double *in, double *out,
+                                      MPI_Comm comm, const fftw_r2r_kind *kind,
+                                      unsigned flags);
+</pre>
+   <p>The parameters are much the same as for the complex DFTs above, except
+that the arrays are of real numbers (and hence the outputs of the
+&lsquo;<samp><span class="samp">local_size</span></samp>&rsquo; data-distribution functions should be interpreted as
+counts of real rather than complex numbers).  Also, the <code>kind</code>
+parameters specify the r2r kinds along each dimension as for the
+serial interface (see <a href="Real_002dto_002dReal-Transform-Kinds.html#Real_002dto_002dReal-Transform-Kinds">Real-to-Real Transform Kinds</a>).  See <a href="Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms.html#Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms">Other Multi-dimensional Real-data MPI Transforms</a>.
+
+<h5 class="subsubheading">MPI transposition</h5>
+
+<p><a name="index-transpose-487"></a>
+FFTW also provides routines to plan a transpose of a distributed
+<code>n0</code> by <code>n1</code> array of real numbers, or an array of
+<code>howmany</code>-tuples of real numbers with specified block sizes
+(see <a href="FFTW-MPI-Transposes.html#FFTW-MPI-Transposes">FFTW MPI Transposes</a>):
+
+   <p><a name="index-fftw_005fmpi_005fplan_005ftranspose-488"></a><a name="index-fftw_005fmpi_005fplan_005fmany_005ftranspose-489"></a>
+<pre class="example">     fftw_plan fftw_mpi_plan_transpose(ptrdiff_t n0, ptrdiff_t n1,
+                                       double *in, double *out,
+                                       MPI_Comm comm, unsigned flags);
+     fftw_plan fftw_mpi_plan_many_transpose
+                     (ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t howmany,
+                      ptrdiff_t block0, ptrdiff_t block1,
+                      double *in, double *out, MPI_Comm comm, unsigned flags);
+</pre>
+   <p><a name="index-new_002darray-execution-490"></a><a name="index-fftw_005fmpi_005fexecute_005fr2r-491"></a>These plans are used with the <code>fftw_mpi_execute_r2r</code> new-array
+execute function (see <a href="Using-MPI-Plans.html#Using-MPI-Plans">Using MPI Plans</a>), since they count as (rank
+zero) r2r plans from FFTW's perspective.
+
+   </body></html>
+