diff src/fftw-3.3.3/dft/vrank-geq1.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/dft/vrank-geq1.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,212 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+
+
+/* Plans for handling vector transform loops.  These are *just* the
+   loops, and rely on child plans for the actual DFTs.
+ 
+   They form a wrapper around solvers that don't have apply functions
+   for non-null vectors.
+ 
+   vrank-geq1 plans also recursively handle the case of multi-dimensional
+   vectors, obviating the need for most solvers to deal with this.  We
+   can also play games here, such as reordering the vector loops.
+ 
+   Each vrank-geq1 plan reduces the vector rank by 1, picking out a
+   dimension determined by the vecloop_dim field of the solver. */
+
+#include "dft.h"
+
+typedef struct {
+     solver super;
+     int vecloop_dim;
+     const int *buddies;
+     int nbuddies;
+} S;
+
+typedef struct {
+     plan_dft super;
+
+     plan *cld;
+     INT vl;
+     INT ivs, ovs;
+     const S *solver;
+} P;
+
+static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
+{
+     const P *ego = (const P *) ego_;
+     INT i, vl = ego->vl;
+     INT ivs = ego->ivs, ovs = ego->ovs;
+     dftapply cldapply = ((plan_dft *) ego->cld)->apply;
+
+     for (i = 0; i < vl; ++i) {
+          cldapply(ego->cld,
+                   ri + i * ivs, ii + i * ivs, ro + i * ovs, io + i * ovs);
+     }
+}
+
+static void awake(plan *ego_, enum wakefulness wakefulness)
+{
+     P *ego = (P *) ego_;
+     X(plan_awake)(ego->cld, wakefulness);
+}
+
+static void destroy(plan *ego_)
+{
+     P *ego = (P *) ego_;
+     X(plan_destroy_internal)(ego->cld);
+}
+
+static void print(const plan *ego_, printer *p)
+{
+     const P *ego = (const P *) ego_;
+     const S *s = ego->solver;
+     p->print(p, "(dft-vrank>=1-x%D/%d%(%p%))",
+ 	      ego->vl, s->vecloop_dim, ego->cld);
+}
+
+static int pickdim(const S *ego, const tensor *vecsz, int oop, int *dp)
+{
+     return X(pickdim)(ego->vecloop_dim, ego->buddies, ego->nbuddies,
+		       vecsz, oop, dp);
+}
+
+static int applicable0(const solver *ego_, const problem *p_, int *dp)
+{
+     const S *ego = (const S *) ego_;
+     const problem_dft *p = (const problem_dft *) p_;
+
+     return (1
+	     && FINITE_RNK(p->vecsz->rnk)
+	     && p->vecsz->rnk > 0
+
+	     /* do not bother looping over rank-0 problems,
+		since they are handled via rdft */
+	     && p->sz->rnk > 0
+
+	     && pickdim(ego, p->vecsz, p->ri != p->ro, dp)
+	  );
+}
+
+static int applicable(const solver *ego_, const problem *p_, 
+		      const planner *plnr, int *dp)
+{
+     const S *ego = (const S *)ego_;
+     const problem_dft *p;
+
+     if (!applicable0(ego_, p_, dp)) return 0;
+
+     /* fftw2 behavior */
+     if (NO_VRANK_SPLITSP(plnr) && (ego->vecloop_dim != ego->buddies[0]))
+	  return 0;
+
+     p = (const problem_dft *) p_;
+
+     if (NO_UGLYP(plnr)) {
+	  /* Heuristic: if the transform is multi-dimensional, and the
+	     vector stride is less than the transform size, then we
+	     probably want to use a rank>=2 plan first in order to combine
+	     this vector with the transform-dimension vectors. */
+	  {
+	       iodim *d = p->vecsz->dims + *dp;
+	       if (1
+		   && p->sz->rnk > 1 
+		   && X(imin)(X(iabs)(d->is), X(iabs)(d->os)) 
+		   < X(tensor_max_index)(p->sz)
+		    )
+		    return 0;
+	  }
+
+	  if (NO_NONTHREADEDP(plnr)) return 0; /* prefer threaded version */
+     }
+
+     return 1;
+}
+
+static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
+{
+     const S *ego = (const S *) ego_;
+     const problem_dft *p;
+     P *pln;
+     plan *cld;
+     int vdim;
+     iodim *d;
+
+     static const plan_adt padt = {
+	  X(dft_solve), awake, print, destroy
+     };
+
+     if (!applicable(ego_, p_, plnr, &vdim))
+          return (plan *) 0;
+     p = (const problem_dft *) p_;
+
+     d = p->vecsz->dims + vdim;
+
+     A(d->n > 1);
+     cld = X(mkplan_d)(plnr,
+		       X(mkproblem_dft_d)(
+			    X(tensor_copy)(p->sz),
+			    X(tensor_copy_except)(p->vecsz, vdim),
+			    TAINT(p->ri, d->is), TAINT(p->ii, d->is),
+			    TAINT(p->ro, d->os), TAINT(p->io, d->os)));
+     if (!cld) return (plan *) 0;
+
+     pln = MKPLAN_DFT(P, &padt, apply);
+
+     pln->cld = cld;
+     pln->vl = d->n;
+     pln->ivs = d->is;
+     pln->ovs = d->os;
+
+     pln->solver = ego;
+     X(ops_zero)(&pln->super.super.ops);
+     pln->super.super.ops.other = 3.14159; /* magic to prefer codelet loops */
+     X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
+
+     if (p->sz->rnk != 1 || (p->sz->dims[0].n > 64))
+	  pln->super.super.pcost = pln->vl * cld->pcost;
+
+     return &(pln->super.super);
+}
+
+static solver *mksolver(int vecloop_dim, const int *buddies, int nbuddies)
+{
+     static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
+     S *slv = MKSOLVER(S, &sadt);
+     slv->vecloop_dim = vecloop_dim;
+     slv->buddies = buddies;
+     slv->nbuddies = nbuddies;
+     return &(slv->super);
+}
+
+void X(dft_vrank_geq1_register)(planner *p)
+{
+     int i;
+
+     /* FIXME: Should we try other vecloop_dim values? */
+     static const int buddies[] = { 1, -1 };
+
+     const int nbuddies = (int)(sizeof(buddies) / sizeof(buddies[0]));
+
+     for (i = 0; i < nbuddies; ++i)
+          REGISTER_SOLVER(p, mksolver(buddies[i], buddies, nbuddies));
+}