diff src/fftw-3.3.3/dft/simd/common/t3fv_8.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/dft/simd/common/t3fv_8.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,229 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sun Nov 25 07:38:49 EST 2012 */
+
+#include "codelet-dft.h"
+
+#ifdef HAVE_FMA
+
+/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3fv_8 -include t3f.h */
+
+/*
+ * This function contains 37 FP additions, 32 FP multiplications,
+ * (or, 27 additions, 22 multiplications, 10 fused multiply/add),
+ * 43 stack variables, 1 constants, and 16 memory accesses
+ */
+#include "t3f.h"
+
+static void t3fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
+     {
+	  INT m;
+	  R *x;
+	  x = ri;
+	  for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
+	       V T2, T3, Tb, T1, T5, Tn, Tq, T8, Td, T4, Ta, Tp, Tg, Ti, T9;
+	       T2 = LDW(&(W[0]));
+	       T3 = LDW(&(W[TWVL * 2]));
+	       Tb = LDW(&(W[TWVL * 4]));
+	       T1 = LD(&(x[0]), ms, &(x[0]));
+	       T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
+	       Tn = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
+	       Tq = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
+	       T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
+	       Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
+	       T4 = VZMUL(T2, T3);
+	       Ta = VZMULJ(T2, T3);
+	       Tp = VZMULJ(T2, Tb);
+	       Tg = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
+	       Ti = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
+	       T9 = VZMULJ(T2, T8);
+	       {
+		    V T6, To, Tc, Tr, Th, Tj;
+		    T6 = VZMULJ(T4, T5);
+		    To = VZMULJ(Ta, Tn);
+		    Tc = VZMULJ(Ta, Tb);
+		    Tr = VZMULJ(Tp, Tq);
+		    Th = VZMULJ(Tb, Tg);
+		    Tj = VZMULJ(T3, Ti);
+		    {
+			 V Tx, T7, Te, Ts, Ty, Tk, TB;
+			 Tx = VADD(T1, T6);
+			 T7 = VSUB(T1, T6);
+			 Te = VZMULJ(Tc, Td);
+			 Ts = VSUB(To, Tr);
+			 Ty = VADD(To, Tr);
+			 Tk = VSUB(Th, Tj);
+			 TB = VADD(Th, Tj);
+			 {
+			      V Tf, TA, Tz, TD;
+			      Tf = VSUB(T9, Te);
+			      TA = VADD(T9, Te);
+			      Tz = VADD(Tx, Ty);
+			      TD = VSUB(Tx, Ty);
+			      {
+				   V TC, TE, Tl, Tt;
+				   TC = VADD(TA, TB);
+				   TE = VSUB(TB, TA);
+				   Tl = VADD(Tf, Tk);
+				   Tt = VSUB(Tk, Tf);
+				   {
+					V Tu, Tw, Tm, Tv;
+					ST(&(x[WS(rs, 2)]), VFMAI(TE, TD), ms, &(x[0]));
+					ST(&(x[WS(rs, 6)]), VFNMSI(TE, TD), ms, &(x[0]));
+					ST(&(x[0]), VADD(Tz, TC), ms, &(x[0]));
+					ST(&(x[WS(rs, 4)]), VSUB(Tz, TC), ms, &(x[0]));
+					Tu = VFNMS(LDK(KP707106781), Tt, Ts);
+					Tw = VFMA(LDK(KP707106781), Tt, Ts);
+					Tm = VFMA(LDK(KP707106781), Tl, T7);
+					Tv = VFNMS(LDK(KP707106781), Tl, T7);
+					ST(&(x[WS(rs, 5)]), VFNMSI(Tw, Tv), ms, &(x[WS(rs, 1)]));
+					ST(&(x[WS(rs, 3)]), VFMAI(Tw, Tv), ms, &(x[WS(rs, 1)]));
+					ST(&(x[WS(rs, 7)]), VFMAI(Tu, Tm), ms, &(x[WS(rs, 1)]));
+					ST(&(x[WS(rs, 1)]), VFNMSI(Tu, Tm), ms, &(x[WS(rs, 1)]));
+				   }
+			      }
+			 }
+		    }
+	       }
+	  }
+     }
+     VLEAVE();
+}
+
+static const tw_instr twinstr[] = {
+     VTW(0, 1),
+     VTW(0, 3),
+     VTW(0, 7),
+     {TW_NEXT, VL, 0}
+};
+
+static const ct_desc desc = { 8, XSIMD_STRING("t3fv_8"), twinstr, &GENUS, {27, 22, 10, 0}, 0, 0, 0 };
+
+void XSIMD(codelet_t3fv_8) (planner *p) {
+     X(kdft_dit_register) (p, t3fv_8, &desc);
+}
+#else				/* HAVE_FMA */
+
+/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3fv_8 -include t3f.h */
+
+/*
+ * This function contains 37 FP additions, 24 FP multiplications,
+ * (or, 37 additions, 24 multiplications, 0 fused multiply/add),
+ * 31 stack variables, 1 constants, and 16 memory accesses
+ */
+#include "t3f.h"
+
+static void t3fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
+     {
+	  INT m;
+	  R *x;
+	  x = ri;
+	  for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
+	       V T2, T3, Ta, T4, Tb, Tc, Tq;
+	       T2 = LDW(&(W[0]));
+	       T3 = LDW(&(W[TWVL * 2]));
+	       Ta = VZMULJ(T2, T3);
+	       T4 = VZMUL(T2, T3);
+	       Tb = LDW(&(W[TWVL * 4]));
+	       Tc = VZMULJ(Ta, Tb);
+	       Tq = VZMULJ(T2, Tb);
+	       {
+		    V T7, Tx, Tt, Ty, Tf, TA, Tk, TB, T1, T6, T5;
+		    T1 = LD(&(x[0]), ms, &(x[0]));
+		    T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
+		    T6 = VZMULJ(T4, T5);
+		    T7 = VSUB(T1, T6);
+		    Tx = VADD(T1, T6);
+		    {
+			 V Tp, Ts, To, Tr;
+			 To = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
+			 Tp = VZMULJ(Ta, To);
+			 Tr = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
+			 Ts = VZMULJ(Tq, Tr);
+			 Tt = VSUB(Tp, Ts);
+			 Ty = VADD(Tp, Ts);
+		    }
+		    {
+			 V T9, Te, T8, Td;
+			 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
+			 T9 = VZMULJ(T2, T8);
+			 Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
+			 Te = VZMULJ(Tc, Td);
+			 Tf = VSUB(T9, Te);
+			 TA = VADD(T9, Te);
+		    }
+		    {
+			 V Th, Tj, Tg, Ti;
+			 Tg = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
+			 Th = VZMULJ(Tb, Tg);
+			 Ti = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
+			 Tj = VZMULJ(T3, Ti);
+			 Tk = VSUB(Th, Tj);
+			 TB = VADD(Th, Tj);
+		    }
+		    {
+			 V Tz, TC, TD, TE;
+			 Tz = VADD(Tx, Ty);
+			 TC = VADD(TA, TB);
+			 ST(&(x[WS(rs, 4)]), VSUB(Tz, TC), ms, &(x[0]));
+			 ST(&(x[0]), VADD(Tz, TC), ms, &(x[0]));
+			 TD = VSUB(Tx, Ty);
+			 TE = VBYI(VSUB(TB, TA));
+			 ST(&(x[WS(rs, 6)]), VSUB(TD, TE), ms, &(x[0]));
+			 ST(&(x[WS(rs, 2)]), VADD(TD, TE), ms, &(x[0]));
+			 {
+			      V Tm, Tv, Tu, Tw, Tl, Tn;
+			      Tl = VMUL(LDK(KP707106781), VADD(Tf, Tk));
+			      Tm = VADD(T7, Tl);
+			      Tv = VSUB(T7, Tl);
+			      Tn = VMUL(LDK(KP707106781), VSUB(Tk, Tf));
+			      Tu = VBYI(VSUB(Tn, Tt));
+			      Tw = VBYI(VADD(Tt, Tn));
+			      ST(&(x[WS(rs, 7)]), VSUB(Tm, Tu), ms, &(x[WS(rs, 1)]));
+			      ST(&(x[WS(rs, 3)]), VADD(Tv, Tw), ms, &(x[WS(rs, 1)]));
+			      ST(&(x[WS(rs, 1)]), VADD(Tm, Tu), ms, &(x[WS(rs, 1)]));
+			      ST(&(x[WS(rs, 5)]), VSUB(Tv, Tw), ms, &(x[WS(rs, 1)]));
+			 }
+		    }
+	       }
+	  }
+     }
+     VLEAVE();
+}
+
+static const tw_instr twinstr[] = {
+     VTW(0, 1),
+     VTW(0, 3),
+     VTW(0, 7),
+     {TW_NEXT, VL, 0}
+};
+
+static const ct_desc desc = { 8, XSIMD_STRING("t3fv_8"), twinstr, &GENUS, {37, 24, 0, 0}, 0, 0, 0 };
+
+void XSIMD(codelet_t3fv_8) (planner *p) {
+     X(kdft_dit_register) (p, t3fv_8, &desc);
+}
+#endif				/* HAVE_FMA */