Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/simd/common/t3fv_8.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/simd/common/t3fv_8.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,229 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:38:49 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3fv_8 -include t3f.h */ + +/* + * This function contains 37 FP additions, 32 FP multiplications, + * (or, 27 additions, 22 multiplications, 10 fused multiply/add), + * 43 stack variables, 1 constants, and 16 memory accesses + */ +#include "t3f.h" + +static void t3fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + R *x; + x = ri; + for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) { + V T2, T3, Tb, T1, T5, Tn, Tq, T8, Td, T4, Ta, Tp, Tg, Ti, T9; + T2 = LDW(&(W[0])); + T3 = LDW(&(W[TWVL * 2])); + Tb = LDW(&(W[TWVL * 4])); + T1 = LD(&(x[0]), ms, &(x[0])); + T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + Tn = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + Tq = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + T4 = VZMUL(T2, T3); + Ta = VZMULJ(T2, T3); + Tp = VZMULJ(T2, Tb); + Tg = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + Ti = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + T9 = VZMULJ(T2, T8); + { + V T6, To, Tc, Tr, Th, Tj; + T6 = VZMULJ(T4, T5); + To = VZMULJ(Ta, Tn); + Tc = VZMULJ(Ta, Tb); + Tr = VZMULJ(Tp, Tq); + Th = VZMULJ(Tb, Tg); + Tj = VZMULJ(T3, Ti); + { + V Tx, T7, Te, Ts, Ty, Tk, TB; + Tx = VADD(T1, T6); + T7 = VSUB(T1, T6); + Te = VZMULJ(Tc, Td); + Ts = VSUB(To, Tr); + Ty = VADD(To, Tr); + Tk = VSUB(Th, Tj); + TB = VADD(Th, Tj); + { + V Tf, TA, Tz, TD; + Tf = VSUB(T9, Te); + TA = VADD(T9, Te); + Tz = VADD(Tx, Ty); + TD = VSUB(Tx, Ty); + { + V TC, TE, Tl, Tt; + TC = VADD(TA, TB); + TE = VSUB(TB, TA); + Tl = VADD(Tf, Tk); + Tt = VSUB(Tk, Tf); + { + V Tu, Tw, Tm, Tv; + ST(&(x[WS(rs, 2)]), VFMAI(TE, TD), ms, &(x[0])); + ST(&(x[WS(rs, 6)]), VFNMSI(TE, TD), ms, &(x[0])); + ST(&(x[0]), VADD(Tz, TC), ms, &(x[0])); + ST(&(x[WS(rs, 4)]), VSUB(Tz, TC), ms, &(x[0])); + Tu = VFNMS(LDK(KP707106781), Tt, Ts); + Tw = VFMA(LDK(KP707106781), Tt, Ts); + Tm = VFMA(LDK(KP707106781), Tl, T7); + Tv = VFNMS(LDK(KP707106781), Tl, T7); + ST(&(x[WS(rs, 5)]), VFNMSI(Tw, Tv), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 3)]), VFMAI(Tw, Tv), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 7)]), VFMAI(Tu, Tm), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 1)]), VFNMSI(Tu, Tm), ms, &(x[WS(rs, 1)])); + } + } + } + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 3), + VTW(0, 7), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 8, XSIMD_STRING("t3fv_8"), twinstr, &GENUS, {27, 22, 10, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t3fv_8) (planner *p) { + X(kdft_dit_register) (p, t3fv_8, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3fv_8 -include t3f.h */ + +/* + * This function contains 37 FP additions, 24 FP multiplications, + * (or, 37 additions, 24 multiplications, 0 fused multiply/add), + * 31 stack variables, 1 constants, and 16 memory accesses + */ +#include "t3f.h" + +static void t3fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + R *x; + x = ri; + for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) { + V T2, T3, Ta, T4, Tb, Tc, Tq; + T2 = LDW(&(W[0])); + T3 = LDW(&(W[TWVL * 2])); + Ta = VZMULJ(T2, T3); + T4 = VZMUL(T2, T3); + Tb = LDW(&(W[TWVL * 4])); + Tc = VZMULJ(Ta, Tb); + Tq = VZMULJ(T2, Tb); + { + V T7, Tx, Tt, Ty, Tf, TA, Tk, TB, T1, T6, T5; + T1 = LD(&(x[0]), ms, &(x[0])); + T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + T6 = VZMULJ(T4, T5); + T7 = VSUB(T1, T6); + Tx = VADD(T1, T6); + { + V Tp, Ts, To, Tr; + To = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + Tp = VZMULJ(Ta, To); + Tr = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + Ts = VZMULJ(Tq, Tr); + Tt = VSUB(Tp, Ts); + Ty = VADD(Tp, Ts); + } + { + V T9, Te, T8, Td; + T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + T9 = VZMULJ(T2, T8); + Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + Te = VZMULJ(Tc, Td); + Tf = VSUB(T9, Te); + TA = VADD(T9, Te); + } + { + V Th, Tj, Tg, Ti; + Tg = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + Th = VZMULJ(Tb, Tg); + Ti = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + Tj = VZMULJ(T3, Ti); + Tk = VSUB(Th, Tj); + TB = VADD(Th, Tj); + } + { + V Tz, TC, TD, TE; + Tz = VADD(Tx, Ty); + TC = VADD(TA, TB); + ST(&(x[WS(rs, 4)]), VSUB(Tz, TC), ms, &(x[0])); + ST(&(x[0]), VADD(Tz, TC), ms, &(x[0])); + TD = VSUB(Tx, Ty); + TE = VBYI(VSUB(TB, TA)); + ST(&(x[WS(rs, 6)]), VSUB(TD, TE), ms, &(x[0])); + ST(&(x[WS(rs, 2)]), VADD(TD, TE), ms, &(x[0])); + { + V Tm, Tv, Tu, Tw, Tl, Tn; + Tl = VMUL(LDK(KP707106781), VADD(Tf, Tk)); + Tm = VADD(T7, Tl); + Tv = VSUB(T7, Tl); + Tn = VMUL(LDK(KP707106781), VSUB(Tk, Tf)); + Tu = VBYI(VSUB(Tn, Tt)); + Tw = VBYI(VADD(Tt, Tn)); + ST(&(x[WS(rs, 7)]), VSUB(Tm, Tu), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 3)]), VADD(Tv, Tw), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 1)]), VADD(Tm, Tu), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 5)]), VSUB(Tv, Tw), ms, &(x[WS(rs, 1)])); + } + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 3), + VTW(0, 7), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 8, XSIMD_STRING("t3fv_8"), twinstr, &GENUS, {37, 24, 0, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t3fv_8) (planner *p) { + X(kdft_dit_register) (p, t3fv_8, &desc); +} +#endif /* HAVE_FMA */