Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/simd/common/t3bv_20.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/simd/common/t3bv_20.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,533 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:39:23 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 20 -name t3bv_20 -include t3b.h -sign 1 */ + +/* + * This function contains 138 FP additions, 118 FP multiplications, + * (or, 92 additions, 72 multiplications, 46 fused multiply/add), + * 90 stack variables, 4 constants, and 40 memory accesses + */ +#include "t3b.h" + +static void t3bv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP559016994, +0.559016994374947424102293417182819058860154590); + DVK(KP951056516, +0.951056516295153572116439333379382143405698634); + DVK(KP618033988, +0.618033988749894848204586834365638117720309180); + DVK(KP250000000, +0.250000000000000000000000000000000000000000000); + { + INT m; + R *x; + x = ii; + for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(20, rs)) { + V T19, T1u, T1p, T1x, T1m, T1w, T1t, TI; + { + V T2, T8, T3, Td; + T2 = LDW(&(W[0])); + T8 = LDW(&(W[TWVL * 2])); + T3 = LDW(&(W[TWVL * 4])); + Td = LDW(&(W[TWVL * 6])); + { + V T7, T1g, T1F, T23, T1n, Tp, T18, T27, T1P, T1I, TU, T1L, T28, T1S, T1o; + V TE, T1l, T1j, T26, T2e; + { + V T1, T1e, T5, T1b; + T1 = LD(&(x[0]), ms, &(x[0])); + T1e = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); + T5 = LD(&(x[WS(rs, 10)]), ms, &(x[0])); + T1b = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + { + V TA, Tx, TQ, T1O, T10, Th, T1G, T1R, T17, T1J, To, Ts, TR, Tv, TK; + V TM, TP, Ty, TB; + { + V Tq, Tt, T13, T16, Tk, Tn; + { + V Tl, Ti, T11, T14, TV, Tc, T6, Tb, Tf, TW, TY, T1f; + { + V T1d, Ta, T9, T4; + Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + TA = VZMULJ(T2, T8); + T9 = VZMUL(T2, T8); + Tx = VZMUL(T8, T3); + Tl = VZMULJ(T8, T3); + T4 = VZMUL(T2, T3); + Tq = VZMULJ(T2, T3); + Tt = VZMULJ(T2, Td); + Ti = VZMULJ(T8, Td); + T11 = VZMULJ(TA, Td); + T14 = VZMULJ(TA, T3); + TQ = VZMUL(TA, T3); + T1d = VZMULJ(T9, Td); + TV = VZMUL(T9, T3); + Tc = VZMULJ(T9, T3); + T6 = VZMUL(T4, T5); + Tb = VZMUL(T9, Ta); + Tf = LD(&(x[WS(rs, 14)]), ms, &(x[0])); + TW = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); + TY = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + T1f = VZMUL(T1d, T1e); + } + { + V T1D, TX, TZ, T15, T1E, Tg, T12, T1c, Te, Tj, Tm; + T12 = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)])); + T1c = VZMUL(Tc, T1b); + Te = VZMULJ(Tc, Td); + T7 = VSUB(T1, T6); + T1D = VADD(T1, T6); + TX = VZMUL(TV, TW); + TZ = VZMUL(T8, TY); + T15 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + T13 = VZMUL(T11, T12); + T1g = VSUB(T1c, T1f); + T1E = VADD(T1c, T1f); + Tg = VZMUL(Te, Tf); + Tj = LD(&(x[WS(rs, 16)]), ms, &(x[0])); + Tm = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + T1O = VADD(TX, TZ); + T10 = VSUB(TX, TZ); + T16 = VZMUL(T14, T15); + T1F = VSUB(T1D, T1E); + T23 = VADD(T1D, T1E); + Th = VSUB(Tb, Tg); + T1G = VADD(Tb, Tg); + Tk = VZMUL(Ti, Tj); + Tn = VZMUL(Tl, Tm); + } + } + { + V Tr, Tu, TJ, TL, TO; + Tr = LD(&(x[WS(rs, 8)]), ms, &(x[0])); + T1R = VADD(T13, T16); + T17 = VSUB(T13, T16); + Tu = LD(&(x[WS(rs, 18)]), ms, &(x[0])); + TJ = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); + TL = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)])); + TO = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + T1J = VADD(Tk, Tn); + To = VSUB(Tk, Tn); + Ts = VZMUL(Tq, Tr); + TR = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); + Tv = VZMUL(Tt, Tu); + TK = VZMUL(T3, TJ); + TM = VZMUL(Td, TL); + TP = VZMUL(T2, TO); + Ty = LD(&(x[WS(rs, 12)]), ms, &(x[0])); + TB = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + } + } + { + V T1N, Tw, T1H, TN, Tz, TC, T1i, TT, T1K, TS; + T1n = VSUB(Th, To); + Tp = VADD(Th, To); + TS = VZMUL(TQ, TR); + T1N = VADD(Ts, Tv); + Tw = VSUB(Ts, Tv); + T1H = VADD(TK, TM); + TN = VSUB(TK, TM); + Tz = VZMUL(Tx, Ty); + TC = VZMUL(TA, TB); + T18 = VSUB(T10, T17); + T1i = VADD(T10, T17); + TT = VSUB(TP, TS); + T1K = VADD(TP, TS); + T27 = VADD(T1N, T1O); + T1P = VSUB(T1N, T1O); + { + V TD, T1Q, T24, T1h, T25; + TD = VSUB(Tz, TC); + T1Q = VADD(Tz, TC); + T1I = VSUB(T1G, T1H); + T24 = VADD(T1G, T1H); + T1h = VADD(TN, TT); + TU = VSUB(TN, TT); + T25 = VADD(T1J, T1K); + T1L = VSUB(T1J, T1K); + T28 = VADD(T1Q, T1R); + T1S = VSUB(T1Q, T1R); + T1o = VSUB(Tw, TD); + TE = VADD(Tw, TD); + T1l = VSUB(T1h, T1i); + T1j = VADD(T1h, T1i); + T26 = VADD(T24, T25); + T2e = VSUB(T24, T25); + } + } + } + } + { + V T1M, T1Z, T1Y, T1T, T29, T2f, TH, TF, T1k, T1C; + T1M = VADD(T1I, T1L); + T1Z = VSUB(T1I, T1L); + T1Y = VSUB(T1P, T1S); + T1T = VADD(T1P, T1S); + T29 = VADD(T27, T28); + T2f = VSUB(T27, T28); + TH = VSUB(Tp, TE); + TF = VADD(Tp, TE); + T1k = VFNMS(LDK(KP250000000), T1j, T1g); + T1C = VADD(T1g, T1j); + { + V T1W, T2c, TG, T2i, T2g, T22, T20, T1V, T2b, T1U, T2a, T1B; + T19 = VFMA(LDK(KP618033988), T18, TU); + T1u = VFNMS(LDK(KP618033988), TU, T18); + T1W = VSUB(T1M, T1T); + T1U = VADD(T1M, T1T); + T2c = VSUB(T26, T29); + T2a = VADD(T26, T29); + TG = VFNMS(LDK(KP250000000), TF, T7); + T1B = VADD(T7, TF); + T2i = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T2e, T2f)); + T2g = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T2f, T2e)); + T22 = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1Y, T1Z)); + T20 = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1Z, T1Y)); + ST(&(x[WS(rs, 10)]), VADD(T1F, T1U), ms, &(x[0])); + T1V = VFNMS(LDK(KP250000000), T1U, T1F); + ST(&(x[0]), VADD(T23, T2a), ms, &(x[0])); + T2b = VFNMS(LDK(KP250000000), T2a, T23); + ST(&(x[WS(rs, 5)]), VFMAI(T1C, T1B), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 15)]), VFNMSI(T1C, T1B), ms, &(x[WS(rs, 1)])); + T1p = VFMA(LDK(KP618033988), T1o, T1n); + T1x = VFNMS(LDK(KP618033988), T1n, T1o); + { + V T21, T1X, T2h, T2d; + T21 = VFMA(LDK(KP559016994), T1W, T1V); + T1X = VFNMS(LDK(KP559016994), T1W, T1V); + T2h = VFNMS(LDK(KP559016994), T2c, T2b); + T2d = VFMA(LDK(KP559016994), T2c, T2b); + ST(&(x[WS(rs, 18)]), VFMAI(T20, T1X), ms, &(x[0])); + ST(&(x[WS(rs, 2)]), VFNMSI(T20, T1X), ms, &(x[0])); + ST(&(x[WS(rs, 14)]), VFNMSI(T22, T21), ms, &(x[0])); + ST(&(x[WS(rs, 6)]), VFMAI(T22, T21), ms, &(x[0])); + ST(&(x[WS(rs, 16)]), VFMAI(T2g, T2d), ms, &(x[0])); + ST(&(x[WS(rs, 4)]), VFNMSI(T2g, T2d), ms, &(x[0])); + ST(&(x[WS(rs, 12)]), VFNMSI(T2i, T2h), ms, &(x[0])); + ST(&(x[WS(rs, 8)]), VFMAI(T2i, T2h), ms, &(x[0])); + T1m = VFMA(LDK(KP559016994), T1l, T1k); + T1w = VFNMS(LDK(KP559016994), T1l, T1k); + T1t = VFNMS(LDK(KP559016994), TH, TG); + TI = VFMA(LDK(KP559016994), TH, TG); + } + } + } + } + } + { + V T1A, T1y, T1q, T1s, T1a, T1r, T1z, T1v; + T1A = VFMA(LDK(KP951056516), T1x, T1w); + T1y = VFNMS(LDK(KP951056516), T1x, T1w); + T1q = VFMA(LDK(KP951056516), T1p, T1m); + T1s = VFNMS(LDK(KP951056516), T1p, T1m); + T1a = VFNMS(LDK(KP951056516), T19, TI); + T1r = VFMA(LDK(KP951056516), T19, TI); + T1z = VFNMS(LDK(KP951056516), T1u, T1t); + T1v = VFMA(LDK(KP951056516), T1u, T1t); + ST(&(x[WS(rs, 9)]), VFMAI(T1s, T1r), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 11)]), VFNMSI(T1s, T1r), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 1)]), VFMAI(T1q, T1a), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 19)]), VFNMSI(T1q, T1a), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 17)]), VFMAI(T1y, T1v), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 3)]), VFNMSI(T1y, T1v), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 13)]), VFMAI(T1A, T1z), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 7)]), VFNMSI(T1A, T1z), ms, &(x[WS(rs, 1)])); + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 3), + VTW(0, 9), + VTW(0, 19), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 20, XSIMD_STRING("t3bv_20"), twinstr, &GENUS, {92, 72, 46, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t3bv_20) (planner *p) { + X(kdft_dit_register) (p, t3bv_20, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 20 -name t3bv_20 -include t3b.h -sign 1 */ + +/* + * This function contains 138 FP additions, 92 FP multiplications, + * (or, 126 additions, 80 multiplications, 12 fused multiply/add), + * 73 stack variables, 4 constants, and 40 memory accesses + */ +#include "t3b.h" + +static void t3bv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP587785252, +0.587785252292473129168705954639072768597652438); + DVK(KP951056516, +0.951056516295153572116439333379382143405698634); + DVK(KP250000000, +0.250000000000000000000000000000000000000000000); + DVK(KP559016994, +0.559016994374947424102293417182819058860154590); + { + INT m; + R *x; + x = ii; + for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(20, rs)) { + V T2, T8, T9, TA, T3, Tc, T4, TV, T14, Tl, Tq, Tx, TQ, Td, Te; + V T1g, Ti, Tt, T11; + T2 = LDW(&(W[0])); + T8 = LDW(&(W[TWVL * 2])); + T9 = VZMUL(T2, T8); + TA = VZMULJ(T2, T8); + T3 = LDW(&(W[TWVL * 4])); + Tc = VZMULJ(T9, T3); + T4 = VZMUL(T2, T3); + TV = VZMUL(T9, T3); + T14 = VZMULJ(TA, T3); + Tl = VZMULJ(T8, T3); + Tq = VZMULJ(T2, T3); + Tx = VZMUL(T8, T3); + TQ = VZMUL(TA, T3); + Td = LDW(&(W[TWVL * 6])); + Te = VZMULJ(Tc, Td); + T1g = VZMULJ(T9, Td); + Ti = VZMULJ(T8, Td); + Tt = VZMULJ(T2, Td); + T11 = VZMULJ(TA, Td); + { + V T7, T1j, T1U, T2a, TU, T1n, T1o, T18, Tp, TE, TF, T26, T27, T28, T1M; + V T1P, T1W, T1b, T1c, T1k, T23, T24, T25, T1F, T1I, T1V, T1B, T1C; + { + V T1, T1i, T6, T1f, T1h, T5, T1e, T1S, T1T; + T1 = LD(&(x[0]), ms, &(x[0])); + T1h = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); + T1i = VZMUL(T1g, T1h); + T5 = LD(&(x[WS(rs, 10)]), ms, &(x[0])); + T6 = VZMUL(T4, T5); + T1e = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + T1f = VZMUL(Tc, T1e); + T7 = VSUB(T1, T6); + T1j = VSUB(T1f, T1i); + T1S = VADD(T1, T6); + T1T = VADD(T1f, T1i); + T1U = VSUB(T1S, T1T); + T2a = VADD(T1S, T1T); + } + { + V Th, T1D, T10, T1L, T17, T1O, To, T1G, Tw, T1K, TN, T1E, TT, T1H, TD; + V T1N; + { + V Tb, Tg, Ta, Tf; + Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + Tb = VZMUL(T9, Ta); + Tf = LD(&(x[WS(rs, 14)]), ms, &(x[0])); + Tg = VZMUL(Te, Tf); + Th = VSUB(Tb, Tg); + T1D = VADD(Tb, Tg); + } + { + V TX, TZ, TW, TY; + TW = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); + TX = VZMUL(TV, TW); + TY = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + TZ = VZMUL(T8, TY); + T10 = VSUB(TX, TZ); + T1L = VADD(TX, TZ); + } + { + V T13, T16, T12, T15; + T12 = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)])); + T13 = VZMUL(T11, T12); + T15 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + T16 = VZMUL(T14, T15); + T17 = VSUB(T13, T16); + T1O = VADD(T13, T16); + } + { + V Tk, Tn, Tj, Tm; + Tj = LD(&(x[WS(rs, 16)]), ms, &(x[0])); + Tk = VZMUL(Ti, Tj); + Tm = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + Tn = VZMUL(Tl, Tm); + To = VSUB(Tk, Tn); + T1G = VADD(Tk, Tn); + } + { + V Ts, Tv, Tr, Tu; + Tr = LD(&(x[WS(rs, 8)]), ms, &(x[0])); + Ts = VZMUL(Tq, Tr); + Tu = LD(&(x[WS(rs, 18)]), ms, &(x[0])); + Tv = VZMUL(Tt, Tu); + Tw = VSUB(Ts, Tv); + T1K = VADD(Ts, Tv); + } + { + V TK, TM, TJ, TL; + TJ = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); + TK = VZMUL(T3, TJ); + TL = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)])); + TM = VZMUL(Td, TL); + TN = VSUB(TK, TM); + T1E = VADD(TK, TM); + } + { + V TP, TS, TO, TR; + TO = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + TP = VZMUL(T2, TO); + TR = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); + TS = VZMUL(TQ, TR); + TT = VSUB(TP, TS); + T1H = VADD(TP, TS); + } + { + V Tz, TC, Ty, TB; + Ty = LD(&(x[WS(rs, 12)]), ms, &(x[0])); + Tz = VZMUL(Tx, Ty); + TB = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + TC = VZMUL(TA, TB); + TD = VSUB(Tz, TC); + T1N = VADD(Tz, TC); + } + TU = VSUB(TN, TT); + T1n = VSUB(Th, To); + T1o = VSUB(Tw, TD); + T18 = VSUB(T10, T17); + Tp = VADD(Th, To); + TE = VADD(Tw, TD); + TF = VADD(Tp, TE); + T26 = VADD(T1K, T1L); + T27 = VADD(T1N, T1O); + T28 = VADD(T26, T27); + T1M = VSUB(T1K, T1L); + T1P = VSUB(T1N, T1O); + T1W = VADD(T1M, T1P); + T1b = VADD(TN, TT); + T1c = VADD(T10, T17); + T1k = VADD(T1b, T1c); + T23 = VADD(T1D, T1E); + T24 = VADD(T1G, T1H); + T25 = VADD(T23, T24); + T1F = VSUB(T1D, T1E); + T1I = VSUB(T1G, T1H); + T1V = VADD(T1F, T1I); + } + T1B = VADD(T7, TF); + T1C = VBYI(VADD(T1j, T1k)); + ST(&(x[WS(rs, 15)]), VSUB(T1B, T1C), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 5)]), VADD(T1B, T1C), ms, &(x[WS(rs, 1)])); + { + V T29, T2b, T2c, T2g, T2i, T2e, T2f, T2h, T2d; + T29 = VMUL(LDK(KP559016994), VSUB(T25, T28)); + T2b = VADD(T25, T28); + T2c = VFNMS(LDK(KP250000000), T2b, T2a); + T2e = VSUB(T23, T24); + T2f = VSUB(T26, T27); + T2g = VBYI(VFMA(LDK(KP951056516), T2e, VMUL(LDK(KP587785252), T2f))); + T2i = VBYI(VFNMS(LDK(KP951056516), T2f, VMUL(LDK(KP587785252), T2e))); + ST(&(x[0]), VADD(T2a, T2b), ms, &(x[0])); + T2h = VSUB(T2c, T29); + ST(&(x[WS(rs, 8)]), VSUB(T2h, T2i), ms, &(x[0])); + ST(&(x[WS(rs, 12)]), VADD(T2i, T2h), ms, &(x[0])); + T2d = VADD(T29, T2c); + ST(&(x[WS(rs, 4)]), VSUB(T2d, T2g), ms, &(x[0])); + ST(&(x[WS(rs, 16)]), VADD(T2g, T2d), ms, &(x[0])); + } + { + V T1Z, T1X, T1Y, T1R, T21, T1J, T1Q, T22, T20; + T1Z = VMUL(LDK(KP559016994), VSUB(T1V, T1W)); + T1X = VADD(T1V, T1W); + T1Y = VFNMS(LDK(KP250000000), T1X, T1U); + T1J = VSUB(T1F, T1I); + T1Q = VSUB(T1M, T1P); + T1R = VBYI(VFNMS(LDK(KP951056516), T1Q, VMUL(LDK(KP587785252), T1J))); + T21 = VBYI(VFMA(LDK(KP951056516), T1J, VMUL(LDK(KP587785252), T1Q))); + ST(&(x[WS(rs, 10)]), VADD(T1U, T1X), ms, &(x[0])); + T22 = VADD(T1Z, T1Y); + ST(&(x[WS(rs, 6)]), VADD(T21, T22), ms, &(x[0])); + ST(&(x[WS(rs, 14)]), VSUB(T22, T21), ms, &(x[0])); + T20 = VSUB(T1Y, T1Z); + ST(&(x[WS(rs, 2)]), VADD(T1R, T20), ms, &(x[0])); + ST(&(x[WS(rs, 18)]), VSUB(T20, T1R), ms, &(x[0])); + } + { + V T19, T1p, T1w, T1u, T1m, T1x, TI, T1t; + T19 = VFNMS(LDK(KP951056516), T18, VMUL(LDK(KP587785252), TU)); + T1p = VFNMS(LDK(KP951056516), T1o, VMUL(LDK(KP587785252), T1n)); + T1w = VFMA(LDK(KP951056516), T1n, VMUL(LDK(KP587785252), T1o)); + T1u = VFMA(LDK(KP951056516), TU, VMUL(LDK(KP587785252), T18)); + { + V T1d, T1l, TG, TH; + T1d = VMUL(LDK(KP559016994), VSUB(T1b, T1c)); + T1l = VFNMS(LDK(KP250000000), T1k, T1j); + T1m = VSUB(T1d, T1l); + T1x = VADD(T1d, T1l); + TG = VFNMS(LDK(KP250000000), TF, T7); + TH = VMUL(LDK(KP559016994), VSUB(Tp, TE)); + TI = VSUB(TG, TH); + T1t = VADD(TH, TG); + } + { + V T1a, T1q, T1z, T1A; + T1a = VSUB(TI, T19); + T1q = VBYI(VSUB(T1m, T1p)); + ST(&(x[WS(rs, 17)]), VSUB(T1a, T1q), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 3)]), VADD(T1a, T1q), ms, &(x[WS(rs, 1)])); + T1z = VADD(T1t, T1u); + T1A = VBYI(VSUB(T1x, T1w)); + ST(&(x[WS(rs, 11)]), VSUB(T1z, T1A), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 9)]), VADD(T1z, T1A), ms, &(x[WS(rs, 1)])); + } + { + V T1r, T1s, T1v, T1y; + T1r = VADD(TI, T19); + T1s = VBYI(VADD(T1p, T1m)); + ST(&(x[WS(rs, 13)]), VSUB(T1r, T1s), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 7)]), VADD(T1r, T1s), ms, &(x[WS(rs, 1)])); + T1v = VSUB(T1t, T1u); + T1y = VBYI(VADD(T1w, T1x)); + ST(&(x[WS(rs, 19)]), VSUB(T1v, T1y), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 1)]), VADD(T1v, T1y), ms, &(x[WS(rs, 1)])); + } + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 3), + VTW(0, 9), + VTW(0, 19), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 20, XSIMD_STRING("t3bv_20"), twinstr, &GENUS, {126, 80, 12, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t3bv_20) (planner *p) { + X(kdft_dit_register) (p, t3bv_20, &desc); +} +#endif /* HAVE_FMA */