Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/simd/common/t3bv_10.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/simd/common/t3bv_10.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,287 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:39:22 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 10 -name t3bv_10 -include t3b.h -sign 1 */ + +/* + * This function contains 57 FP additions, 52 FP multiplications, + * (or, 39 additions, 34 multiplications, 18 fused multiply/add), + * 57 stack variables, 4 constants, and 20 memory accesses + */ +#include "t3b.h" + +static void t3bv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP559016994, +0.559016994374947424102293417182819058860154590); + DVK(KP250000000, +0.250000000000000000000000000000000000000000000); + DVK(KP618033988, +0.618033988749894848204586834365638117720309180); + DVK(KP951056516, +0.951056516295153572116439333379382143405698634); + { + INT m; + R *x; + x = ii; + for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(10, rs)) { + V T1, T7, Th, Tx, Tr, Td, Tp, T6, Tv, Tc, Te, Ti, Tl, T2, T3; + V T5; + T2 = LDW(&(W[0])); + T3 = LDW(&(W[TWVL * 2])); + T5 = LDW(&(W[TWVL * 4])); + T1 = LD(&(x[0]), ms, &(x[0])); + T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + { + V To, Tw, Tq, Tu, Ta, T4, Tt, Tk, Tb; + To = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + Tw = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + Tq = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); + Tu = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + Ta = VZMULJ(T2, T3); + T4 = VZMUL(T2, T3); + Th = VZMULJ(T2, T5); + Tt = VZMULJ(T3, T5); + Tb = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + Tx = VZMUL(T2, Tw); + Tr = VZMUL(T5, Tq); + Tk = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + Td = VZMULJ(Ta, T5); + Tp = VZMUL(T4, To); + T6 = VZMULJ(T4, T5); + Tv = VZMUL(Tt, Tu); + Tc = VZMUL(Ta, Tb); + Te = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + Ti = LD(&(x[WS(rs, 8)]), ms, &(x[0])); + Tl = VZMUL(T3, Tk); + } + { + V TN, Ts, T8, Ty, TO, Tf, Tj; + TN = VADD(Tp, Tr); + Ts = VSUB(Tp, Tr); + T8 = VZMUL(T6, T7); + Ty = VSUB(Tv, Tx); + TO = VADD(Tv, Tx); + Tf = VZMUL(Td, Te); + Tj = VZMUL(Th, Ti); + { + V T9, TJ, TP, TU, Tz, TF, Tg, TK, Tm, TL; + T9 = VSUB(T1, T8); + TJ = VADD(T1, T8); + TP = VADD(TN, TO); + TU = VSUB(TN, TO); + Tz = VADD(Ts, Ty); + TF = VSUB(Ts, Ty); + Tg = VSUB(Tc, Tf); + TK = VADD(Tc, Tf); + Tm = VSUB(Tj, Tl); + TL = VADD(Tj, Tl); + { + V TM, TV, Tn, TE; + TM = VADD(TK, TL); + TV = VSUB(TK, TL); + Tn = VADD(Tg, Tm); + TE = VSUB(Tg, Tm); + { + V TW, TY, TS, TQ, TG, TI, TC, TA, TR, TB; + TW = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TV, TU)); + TY = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TU, TV)); + TS = VSUB(TM, TP); + TQ = VADD(TM, TP); + TG = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TF, TE)); + TI = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TE, TF)); + TC = VSUB(Tn, Tz); + TA = VADD(Tn, Tz); + ST(&(x[0]), VADD(TJ, TQ), ms, &(x[0])); + TR = VFNMS(LDK(KP250000000), TQ, TJ); + ST(&(x[WS(rs, 5)]), VADD(T9, TA), ms, &(x[WS(rs, 1)])); + TB = VFNMS(LDK(KP250000000), TA, T9); + { + V TX, TT, TH, TD; + TX = VFMA(LDK(KP559016994), TS, TR); + TT = VFNMS(LDK(KP559016994), TS, TR); + TH = VFNMS(LDK(KP559016994), TC, TB); + TD = VFMA(LDK(KP559016994), TC, TB); + ST(&(x[WS(rs, 8)]), VFMAI(TW, TT), ms, &(x[0])); + ST(&(x[WS(rs, 2)]), VFNMSI(TW, TT), ms, &(x[0])); + ST(&(x[WS(rs, 6)]), VFMAI(TY, TX), ms, &(x[0])); + ST(&(x[WS(rs, 4)]), VFNMSI(TY, TX), ms, &(x[0])); + ST(&(x[WS(rs, 9)]), VFNMSI(TG, TD), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 1)]), VFMAI(TG, TD), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 7)]), VFNMSI(TI, TH), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 3)]), VFMAI(TI, TH), ms, &(x[WS(rs, 1)])); + } + } + } + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 3), + VTW(0, 9), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 10, XSIMD_STRING("t3bv_10"), twinstr, &GENUS, {39, 34, 18, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t3bv_10) (planner *p) { + X(kdft_dit_register) (p, t3bv_10, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 10 -name t3bv_10 -include t3b.h -sign 1 */ + +/* + * This function contains 57 FP additions, 42 FP multiplications, + * (or, 51 additions, 36 multiplications, 6 fused multiply/add), + * 41 stack variables, 4 constants, and 20 memory accesses + */ +#include "t3b.h" + +static void t3bv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP587785252, +0.587785252292473129168705954639072768597652438); + DVK(KP951056516, +0.951056516295153572116439333379382143405698634); + DVK(KP250000000, +0.250000000000000000000000000000000000000000000); + DVK(KP559016994, +0.559016994374947424102293417182819058860154590); + { + INT m; + R *x; + x = ii; + for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(10, rs)) { + V T1, T2, T3, Ti, T6, T7, TA, Tb, To; + T1 = LDW(&(W[0])); + T2 = LDW(&(W[TWVL * 2])); + T3 = VZMULJ(T1, T2); + Ti = VZMUL(T1, T2); + T6 = LDW(&(W[TWVL * 4])); + T7 = VZMULJ(T3, T6); + TA = VZMULJ(Ti, T6); + Tb = VZMULJ(T1, T6); + To = VZMULJ(T2, T6); + { + V TD, TQ, Tn, Tt, Tx, TM, TN, TS, Ta, Tg, Tw, TJ, TK, TR, Tz; + V TC, TB; + Tz = LD(&(x[0]), ms, &(x[0])); + TB = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + TC = VZMUL(TA, TB); + TD = VSUB(Tz, TC); + TQ = VADD(Tz, TC); + { + V Tk, Ts, Tm, Tq; + { + V Tj, Tr, Tl, Tp; + Tj = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + Tk = VZMUL(Ti, Tj); + Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + Ts = VZMUL(T1, Tr); + Tl = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); + Tm = VZMUL(T6, Tl); + Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + Tq = VZMUL(To, Tp); + } + Tn = VSUB(Tk, Tm); + Tt = VSUB(Tq, Ts); + Tx = VADD(Tn, Tt); + TM = VADD(Tk, Tm); + TN = VADD(Tq, Ts); + TS = VADD(TM, TN); + } + { + V T5, Tf, T9, Td; + { + V T4, Te, T8, Tc; + T4 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + T5 = VZMUL(T3, T4); + Te = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + Tf = VZMUL(T2, Te); + T8 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + T9 = VZMUL(T7, T8); + Tc = LD(&(x[WS(rs, 8)]), ms, &(x[0])); + Td = VZMUL(Tb, Tc); + } + Ta = VSUB(T5, T9); + Tg = VSUB(Td, Tf); + Tw = VADD(Ta, Tg); + TJ = VADD(T5, T9); + TK = VADD(Td, Tf); + TR = VADD(TJ, TK); + } + { + V Ty, TE, TF, Tv, TI, Th, Tu, TH, TG; + Ty = VMUL(LDK(KP559016994), VSUB(Tw, Tx)); + TE = VADD(Tw, Tx); + TF = VFNMS(LDK(KP250000000), TE, TD); + Th = VSUB(Ta, Tg); + Tu = VSUB(Tn, Tt); + Tv = VBYI(VFMA(LDK(KP951056516), Th, VMUL(LDK(KP587785252), Tu))); + TI = VBYI(VFNMS(LDK(KP951056516), Tu, VMUL(LDK(KP587785252), Th))); + ST(&(x[WS(rs, 5)]), VADD(TD, TE), ms, &(x[WS(rs, 1)])); + TH = VSUB(TF, Ty); + ST(&(x[WS(rs, 3)]), VSUB(TH, TI), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 7)]), VADD(TI, TH), ms, &(x[WS(rs, 1)])); + TG = VADD(Ty, TF); + ST(&(x[WS(rs, 1)]), VADD(Tv, TG), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 9)]), VSUB(TG, Tv), ms, &(x[WS(rs, 1)])); + } + { + V TV, TT, TU, TP, TY, TL, TO, TX, TW; + TV = VMUL(LDK(KP559016994), VSUB(TR, TS)); + TT = VADD(TR, TS); + TU = VFNMS(LDK(KP250000000), TT, TQ); + TL = VSUB(TJ, TK); + TO = VSUB(TM, TN); + TP = VBYI(VFNMS(LDK(KP951056516), TO, VMUL(LDK(KP587785252), TL))); + TY = VBYI(VFMA(LDK(KP951056516), TL, VMUL(LDK(KP587785252), TO))); + ST(&(x[0]), VADD(TQ, TT), ms, &(x[0])); + TX = VADD(TV, TU); + ST(&(x[WS(rs, 4)]), VSUB(TX, TY), ms, &(x[0])); + ST(&(x[WS(rs, 6)]), VADD(TY, TX), ms, &(x[0])); + TW = VSUB(TU, TV); + ST(&(x[WS(rs, 2)]), VADD(TP, TW), ms, &(x[0])); + ST(&(x[WS(rs, 8)]), VSUB(TW, TP), ms, &(x[0])); + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 3), + VTW(0, 9), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 10, XSIMD_STRING("t3bv_10"), twinstr, &GENUS, {51, 36, 6, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t3bv_10) (planner *p) { + X(kdft_dit_register) (p, t3bv_10, &desc); +} +#endif /* HAVE_FMA */