Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/simd/common/t2sv_8.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/simd/common/t2sv_8.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,389 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:39:26 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -n 8 -name t2sv_8 -include ts.h */ + +/* + * This function contains 74 FP additions, 50 FP multiplications, + * (or, 44 additions, 20 multiplications, 30 fused multiply/add), + * 64 stack variables, 1 constants, and 32 memory accesses + */ +#include "ts.h" + +static void t2sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + for (m = mb, W = W + (mb * 6); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 6), MAKE_VOLATILE_STRIDE(16, rs)) { + V T1m, T1l, T1k, T1u, T1n, T1o; + { + V T2, T3, Tl, Tn, T5, T6; + T2 = LDW(&(W[0])); + T3 = LDW(&(W[TWVL * 2])); + Tl = LDW(&(W[TWVL * 4])); + Tn = LDW(&(W[TWVL * 5])); + T5 = LDW(&(W[TWVL * 1])); + T6 = LDW(&(W[TWVL * 3])); + { + V T1, T1s, TK, T1r, Td, Tk, TG, TC, TY, Tu, TW, TL, TM, TO, TQ; + V Tx, Tz, TD, TH; + { + V T8, T4, Tm, Tr, Tc, Ta; + T1 = LD(&(ri[0]), ms, &(ri[0])); + T1s = LD(&(ii[0]), ms, &(ii[0])); + T8 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0])); + T4 = VMUL(T2, T3); + Tm = VMUL(T2, Tl); + Tr = VMUL(T2, Tn); + Tc = LD(&(ii[WS(rs, 4)]), ms, &(ii[0])); + Ta = VMUL(T2, T6); + { + V Tp, Tt, Tg, T7, Tf, To, Ts, Ti, Tb, Tj; + Tp = LD(&(ri[WS(rs, 6)]), ms, &(ri[0])); + Tt = LD(&(ii[WS(rs, 6)]), ms, &(ii[0])); + Tg = LD(&(ri[WS(rs, 2)]), ms, &(ri[0])); + T7 = VFNMS(T5, T6, T4); + Tf = VFMA(T5, T6, T4); + To = VFMA(T5, Tn, Tm); + Ts = VFNMS(T5, Tl, Tr); + Ti = VFNMS(T5, T3, Ta); + Tb = VFMA(T5, T3, Ta); + Tj = LD(&(ii[WS(rs, 2)]), ms, &(ii[0])); + TK = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)])); + { + V T1q, T9, Th, TF; + T1q = VMUL(T7, Tc); + T9 = VMUL(T7, T8); + Th = VMUL(Tf, Tg); + TF = VMUL(Tf, Tn); + { + V TB, TX, Tq, TV; + TB = VMUL(Tf, Tl); + TX = VMUL(To, Tt); + Tq = VMUL(To, Tp); + TV = VMUL(Tf, Tj); + T1r = VFNMS(Tb, T8, T1q); + Td = VFMA(Tb, Tc, T9); + Tk = VFMA(Ti, Tj, Th); + TG = VFNMS(Ti, Tl, TF); + TC = VFMA(Ti, Tn, TB); + TY = VFNMS(Ts, Tp, TX); + Tu = VFMA(Ts, Tt, Tq); + TW = VFNMS(Ti, Tg, TV); + TL = VMUL(Tl, TK); + } + } + TM = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)])); + TO = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)])); + TQ = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)])); + Tx = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)])); + Tz = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)])); + TD = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)])); + TH = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)])); + } + } + { + V Te, T1p, T1g, T10, TS, T18, T1d, T1t, T1x, T1y, Tv, TJ, T11, T16; + { + V TN, T1a, TR, T1c, TA, T13, TI, T15; + { + V TU, T19, TP, T1b, Ty, T12, TE, T14, TZ; + TU = VSUB(T1, Td); + Te = VADD(T1, Td); + TN = VFMA(Tn, TM, TL); + T19 = VMUL(Tl, TM); + TP = VMUL(T3, TO); + T1b = VMUL(T3, TQ); + Ty = VMUL(T2, Tx); + T12 = VMUL(T2, Tz); + TE = VMUL(TC, TD); + T14 = VMUL(TC, TH); + T1p = VADD(TW, TY); + TZ = VSUB(TW, TY); + T1a = VFNMS(Tn, TK, T19); + TR = VFMA(T6, TQ, TP); + T1c = VFNMS(T6, TO, T1b); + TA = VFMA(T5, Tz, Ty); + T13 = VFNMS(T5, Tx, T12); + TI = VFMA(TG, TH, TE); + T15 = VFNMS(TG, TD, T14); + T1g = VSUB(TU, TZ); + T10 = VADD(TU, TZ); + } + TS = VADD(TN, TR); + T18 = VSUB(TN, TR); + T1d = VSUB(T1a, T1c); + T1m = VADD(T1a, T1c); + T1t = VADD(T1r, T1s); + T1x = VSUB(T1s, T1r); + T1y = VSUB(Tk, Tu); + Tv = VADD(Tk, Tu); + TJ = VADD(TA, TI); + T11 = VSUB(TA, TI); + T16 = VSUB(T13, T15); + T1l = VADD(T13, T15); + } + { + V Tw, T1w, T1v, TT; + { + V T1i, T1e, T1B, T1z, T1h, T17; + T1i = VADD(T18, T1d); + T1e = VSUB(T18, T1d); + T1B = VADD(T1y, T1x); + T1z = VSUB(T1x, T1y); + T1h = VSUB(T16, T11); + T17 = VADD(T11, T16); + T1k = VSUB(Te, Tv); + Tw = VADD(Te, Tv); + { + V T1A, T1j, T1C, T1f; + T1A = VADD(T1h, T1i); + T1j = VSUB(T1h, T1i); + T1C = VSUB(T1e, T17); + T1f = VADD(T17, T1e); + T1w = VSUB(T1t, T1p); + T1u = VADD(T1p, T1t); + T1v = VSUB(TS, TJ); + TT = VADD(TJ, TS); + ST(&(ii[WS(rs, 1)]), VFMA(LDK(KP707106781), T1A, T1z), ms, &(ii[WS(rs, 1)])); + ST(&(ii[WS(rs, 5)]), VFNMS(LDK(KP707106781), T1A, T1z), ms, &(ii[WS(rs, 1)])); + ST(&(ri[WS(rs, 3)]), VFMA(LDK(KP707106781), T1j, T1g), ms, &(ri[WS(rs, 1)])); + ST(&(ri[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1j, T1g), ms, &(ri[WS(rs, 1)])); + ST(&(ii[WS(rs, 3)]), VFMA(LDK(KP707106781), T1C, T1B), ms, &(ii[WS(rs, 1)])); + ST(&(ii[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1C, T1B), ms, &(ii[WS(rs, 1)])); + ST(&(ri[WS(rs, 1)]), VFMA(LDK(KP707106781), T1f, T10), ms, &(ri[WS(rs, 1)])); + ST(&(ri[WS(rs, 5)]), VFNMS(LDK(KP707106781), T1f, T10), ms, &(ri[WS(rs, 1)])); + } + } + ST(&(ri[WS(rs, 4)]), VSUB(Tw, TT), ms, &(ri[0])); + ST(&(ri[0]), VADD(Tw, TT), ms, &(ri[0])); + ST(&(ii[WS(rs, 6)]), VSUB(T1w, T1v), ms, &(ii[0])); + ST(&(ii[WS(rs, 2)]), VADD(T1v, T1w), ms, &(ii[0])); + } + } + } + } + T1n = VSUB(T1l, T1m); + T1o = VADD(T1l, T1m); + ST(&(ii[0]), VADD(T1o, T1u), ms, &(ii[0])); + ST(&(ii[WS(rs, 4)]), VSUB(T1u, T1o), ms, &(ii[0])); + ST(&(ri[WS(rs, 2)]), VADD(T1k, T1n), ms, &(ri[0])); + ST(&(ri[WS(rs, 6)]), VSUB(T1k, T1n), ms, &(ri[0])); + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 3), + VTW(0, 7), + {TW_NEXT, (2 * VL), 0} +}; + +static const ct_desc desc = { 8, XSIMD_STRING("t2sv_8"), twinstr, &GENUS, {44, 20, 30, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t2sv_8) (planner *p) { + X(kdft_dit_register) (p, t2sv_8, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -n 8 -name t2sv_8 -include ts.h */ + +/* + * This function contains 74 FP additions, 44 FP multiplications, + * (or, 56 additions, 26 multiplications, 18 fused multiply/add), + * 42 stack variables, 1 constants, and 32 memory accesses + */ +#include "ts.h" + +static void t2sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + for (m = mb, W = W + (mb * 6); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 6), MAKE_VOLATILE_STRIDE(16, rs)) { + V T2, T5, T3, T6, T8, Tc, Tg, Ti, Tl, Tm, Tn, Tz, Tp, Tx; + { + V T4, Tb, T7, Ta; + T2 = LDW(&(W[0])); + T5 = LDW(&(W[TWVL * 1])); + T3 = LDW(&(W[TWVL * 2])); + T6 = LDW(&(W[TWVL * 3])); + T4 = VMUL(T2, T3); + Tb = VMUL(T5, T3); + T7 = VMUL(T5, T6); + Ta = VMUL(T2, T6); + T8 = VSUB(T4, T7); + Tc = VADD(Ta, Tb); + Tg = VADD(T4, T7); + Ti = VSUB(Ta, Tb); + Tl = LDW(&(W[TWVL * 4])); + Tm = LDW(&(W[TWVL * 5])); + Tn = VFMA(T2, Tl, VMUL(T5, Tm)); + Tz = VFNMS(Ti, Tl, VMUL(Tg, Tm)); + Tp = VFNMS(T5, Tl, VMUL(T2, Tm)); + Tx = VFMA(Tg, Tl, VMUL(Ti, Tm)); + } + { + V Tf, T1i, TL, T1d, TJ, T17, TV, TY, Ts, T1j, TO, T1a, TC, T16, TQ; + V TT; + { + V T1, T1c, Te, T1b, T9, Td; + T1 = LD(&(ri[0]), ms, &(ri[0])); + T1c = LD(&(ii[0]), ms, &(ii[0])); + T9 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0])); + Td = LD(&(ii[WS(rs, 4)]), ms, &(ii[0])); + Te = VFMA(T8, T9, VMUL(Tc, Td)); + T1b = VFNMS(Tc, T9, VMUL(T8, Td)); + Tf = VADD(T1, Te); + T1i = VSUB(T1c, T1b); + TL = VSUB(T1, Te); + T1d = VADD(T1b, T1c); + } + { + V TF, TW, TI, TX; + { + V TD, TE, TG, TH; + TD = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)])); + TE = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)])); + TF = VFMA(Tl, TD, VMUL(Tm, TE)); + TW = VFNMS(Tm, TD, VMUL(Tl, TE)); + TG = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)])); + TH = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)])); + TI = VFMA(T3, TG, VMUL(T6, TH)); + TX = VFNMS(T6, TG, VMUL(T3, TH)); + } + TJ = VADD(TF, TI); + T17 = VADD(TW, TX); + TV = VSUB(TF, TI); + TY = VSUB(TW, TX); + } + { + V Tk, TM, Tr, TN; + { + V Th, Tj, To, Tq; + Th = LD(&(ri[WS(rs, 2)]), ms, &(ri[0])); + Tj = LD(&(ii[WS(rs, 2)]), ms, &(ii[0])); + Tk = VFMA(Tg, Th, VMUL(Ti, Tj)); + TM = VFNMS(Ti, Th, VMUL(Tg, Tj)); + To = LD(&(ri[WS(rs, 6)]), ms, &(ri[0])); + Tq = LD(&(ii[WS(rs, 6)]), ms, &(ii[0])); + Tr = VFMA(Tn, To, VMUL(Tp, Tq)); + TN = VFNMS(Tp, To, VMUL(Tn, Tq)); + } + Ts = VADD(Tk, Tr); + T1j = VSUB(Tk, Tr); + TO = VSUB(TM, TN); + T1a = VADD(TM, TN); + } + { + V Tw, TR, TB, TS; + { + V Tu, Tv, Ty, TA; + Tu = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)])); + Tv = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)])); + Tw = VFMA(T2, Tu, VMUL(T5, Tv)); + TR = VFNMS(T5, Tu, VMUL(T2, Tv)); + Ty = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)])); + TA = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)])); + TB = VFMA(Tx, Ty, VMUL(Tz, TA)); + TS = VFNMS(Tz, Ty, VMUL(Tx, TA)); + } + TC = VADD(Tw, TB); + T16 = VADD(TR, TS); + TQ = VSUB(Tw, TB); + TT = VSUB(TR, TS); + } + { + V Tt, TK, T1f, T1g; + Tt = VADD(Tf, Ts); + TK = VADD(TC, TJ); + ST(&(ri[WS(rs, 4)]), VSUB(Tt, TK), ms, &(ri[0])); + ST(&(ri[0]), VADD(Tt, TK), ms, &(ri[0])); + { + V T19, T1e, T15, T18; + T19 = VADD(T16, T17); + T1e = VADD(T1a, T1d); + ST(&(ii[0]), VADD(T19, T1e), ms, &(ii[0])); + ST(&(ii[WS(rs, 4)]), VSUB(T1e, T19), ms, &(ii[0])); + T15 = VSUB(Tf, Ts); + T18 = VSUB(T16, T17); + ST(&(ri[WS(rs, 6)]), VSUB(T15, T18), ms, &(ri[0])); + ST(&(ri[WS(rs, 2)]), VADD(T15, T18), ms, &(ri[0])); + } + T1f = VSUB(TJ, TC); + T1g = VSUB(T1d, T1a); + ST(&(ii[WS(rs, 2)]), VADD(T1f, T1g), ms, &(ii[0])); + ST(&(ii[WS(rs, 6)]), VSUB(T1g, T1f), ms, &(ii[0])); + { + V T11, T1k, T14, T1h, T12, T13; + T11 = VSUB(TL, TO); + T1k = VSUB(T1i, T1j); + T12 = VSUB(TT, TQ); + T13 = VADD(TV, TY); + T14 = VMUL(LDK(KP707106781), VSUB(T12, T13)); + T1h = VMUL(LDK(KP707106781), VADD(T12, T13)); + ST(&(ri[WS(rs, 7)]), VSUB(T11, T14), ms, &(ri[WS(rs, 1)])); + ST(&(ii[WS(rs, 5)]), VSUB(T1k, T1h), ms, &(ii[WS(rs, 1)])); + ST(&(ri[WS(rs, 3)]), VADD(T11, T14), ms, &(ri[WS(rs, 1)])); + ST(&(ii[WS(rs, 1)]), VADD(T1h, T1k), ms, &(ii[WS(rs, 1)])); + } + { + V TP, T1m, T10, T1l, TU, TZ; + TP = VADD(TL, TO); + T1m = VADD(T1j, T1i); + TU = VADD(TQ, TT); + TZ = VSUB(TV, TY); + T10 = VMUL(LDK(KP707106781), VADD(TU, TZ)); + T1l = VMUL(LDK(KP707106781), VSUB(TZ, TU)); + ST(&(ri[WS(rs, 5)]), VSUB(TP, T10), ms, &(ri[WS(rs, 1)])); + ST(&(ii[WS(rs, 7)]), VSUB(T1m, T1l), ms, &(ii[WS(rs, 1)])); + ST(&(ri[WS(rs, 1)]), VADD(TP, T10), ms, &(ri[WS(rs, 1)])); + ST(&(ii[WS(rs, 3)]), VADD(T1l, T1m), ms, &(ii[WS(rs, 1)])); + } + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 3), + VTW(0, 7), + {TW_NEXT, (2 * VL), 0} +}; + +static const ct_desc desc = { 8, XSIMD_STRING("t2sv_8"), twinstr, &GENUS, {56, 26, 18, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t2sv_8) (planner *p) { + X(kdft_dit_register) (p, t2sv_8, &desc); +} +#endif /* HAVE_FMA */