Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/simd/common/t2bv_20.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/simd/common/t2bv_20.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,519 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:39:14 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 20 -name t2bv_20 -include t2b.h -sign 1 */ + +/* + * This function contains 123 FP additions, 88 FP multiplications, + * (or, 77 additions, 42 multiplications, 46 fused multiply/add), + * 68 stack variables, 4 constants, and 40 memory accesses + */ +#include "t2b.h" + +static void t2bv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP951056516, +0.951056516295153572116439333379382143405698634); + DVK(KP559016994, +0.559016994374947424102293417182819058860154590); + DVK(KP250000000, +0.250000000000000000000000000000000000000000000); + DVK(KP618033988, +0.618033988749894848204586834365638117720309180); + { + INT m; + R *x; + x = ii; + for (m = mb, W = W + (mb * ((TWVL / VL) * 38)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 38), MAKE_VOLATILE_STRIDE(20, rs)) { + V T4, TX, T1m, T1K, T1y, Tk, Tf, T14, TQ, TZ, T1O, T1w, T1L, T1p, T1M; + V T1s, TF, TY, T1x, Tp; + { + V T1, TV, T2, TT; + T1 = LD(&(x[0]), ms, &(x[0])); + TV = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); + T2 = LD(&(x[WS(rs, 10)]), ms, &(x[0])); + TT = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + { + V T9, T1n, TK, T1v, TP, Te, T1q, T1u, TB, TD, Tm, T1o, Tz, Tn, T1r; + V TE, To; + { + V TM, TO, Ta, Tc; + { + V T5, T7, TG, TI, T1k, T1l; + T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + T7 = LD(&(x[WS(rs, 14)]), ms, &(x[0])); + TG = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); + TI = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + { + V TW, T3, TU, T6, T8, TH, TJ, TL, TN; + TL = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)])); + TW = BYTW(&(W[TWVL * 28]), TV); + T3 = BYTW(&(W[TWVL * 18]), T2); + TU = BYTW(&(W[TWVL * 8]), TT); + T6 = BYTW(&(W[TWVL * 6]), T5); + T8 = BYTW(&(W[TWVL * 26]), T7); + TH = BYTW(&(W[TWVL * 24]), TG); + TJ = BYTW(&(W[TWVL * 4]), TI); + TM = BYTW(&(W[TWVL * 32]), TL); + TN = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + T4 = VSUB(T1, T3); + T1k = VADD(T1, T3); + TX = VSUB(TU, TW); + T1l = VADD(TU, TW); + T9 = VSUB(T6, T8); + T1n = VADD(T6, T8); + TK = VSUB(TH, TJ); + T1v = VADD(TH, TJ); + TO = BYTW(&(W[TWVL * 12]), TN); + } + Ta = LD(&(x[WS(rs, 16)]), ms, &(x[0])); + T1m = VSUB(T1k, T1l); + T1K = VADD(T1k, T1l); + Tc = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + } + { + V Tb, Tx, Td, Th, Tj, Tw, Tg, Ti, Tv; + Tg = LD(&(x[WS(rs, 8)]), ms, &(x[0])); + Ti = LD(&(x[WS(rs, 18)]), ms, &(x[0])); + Tv = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); + TP = VSUB(TM, TO); + T1y = VADD(TM, TO); + Tb = BYTW(&(W[TWVL * 30]), Ta); + Tx = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)])); + Td = BYTW(&(W[TWVL * 10]), Tc); + Th = BYTW(&(W[TWVL * 14]), Tg); + Tj = BYTW(&(W[TWVL * 34]), Ti); + Tw = BYTW(&(W[TWVL * 16]), Tv); + { + V TA, TC, Ty, Tl; + TA = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + TC = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); + Tl = LD(&(x[WS(rs, 12)]), ms, &(x[0])); + Ty = BYTW(&(W[TWVL * 36]), Tx); + Te = VSUB(Tb, Td); + T1q = VADD(Tb, Td); + Tk = VSUB(Th, Tj); + T1u = VADD(Th, Tj); + TB = BYTW(&(W[0]), TA); + TD = BYTW(&(W[TWVL * 20]), TC); + Tm = BYTW(&(W[TWVL * 22]), Tl); + T1o = VADD(Tw, Ty); + Tz = VSUB(Tw, Ty); + Tn = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + } + } + } + Tf = VADD(T9, Te); + T14 = VSUB(T9, Te); + TQ = VSUB(TK, TP); + TZ = VADD(TK, TP); + T1r = VADD(TB, TD); + TE = VSUB(TB, TD); + T1O = VADD(T1u, T1v); + T1w = VSUB(T1u, T1v); + To = BYTW(&(W[TWVL * 2]), Tn); + T1L = VADD(T1n, T1o); + T1p = VSUB(T1n, T1o); + T1M = VADD(T1q, T1r); + T1s = VSUB(T1q, T1r); + TF = VSUB(Tz, TE); + TY = VADD(Tz, TE); + T1x = VADD(Tm, To); + Tp = VSUB(Tm, To); + } + } + { + V T1V, T1N, T12, T1b, TR, T1G, T1t, T1z, T1P, Tq, T15, T11, T1j, T10; + T1V = VSUB(T1L, T1M); + T1N = VADD(T1L, T1M); + T12 = VSUB(TY, TZ); + T10 = VADD(TY, TZ); + T1b = VFNMS(LDK(KP618033988), TF, TQ); + TR = VFMA(LDK(KP618033988), TQ, TF); + T1G = VSUB(T1p, T1s); + T1t = VADD(T1p, T1s); + T1z = VSUB(T1x, T1y); + T1P = VADD(T1x, T1y); + Tq = VADD(Tk, Tp); + T15 = VSUB(Tk, Tp); + T11 = VFNMS(LDK(KP250000000), T10, TX); + T1j = VADD(TX, T10); + { + V T1J, T1H, T1D, T1Z, T1X, T1T, T1f, T1h, T19, T17, T1C, T1S, T1a, Tu, T1F; + V T1A; + T1F = VSUB(T1w, T1z); + T1A = VADD(T1w, T1z); + { + V T1W, T1Q, Tt, Tr; + T1W = VSUB(T1O, T1P); + T1Q = VADD(T1O, T1P); + Tt = VSUB(Tf, Tq); + Tr = VADD(Tf, Tq); + { + V T1e, T16, T1d, T13; + T1e = VFNMS(LDK(KP618033988), T14, T15); + T16 = VFMA(LDK(KP618033988), T15, T14); + T1d = VFNMS(LDK(KP559016994), T12, T11); + T13 = VFMA(LDK(KP559016994), T12, T11); + T1J = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1F, T1G)); + T1H = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1G, T1F)); + { + V T1B, T1R, Ts, T1i; + T1B = VADD(T1t, T1A); + T1D = VSUB(T1t, T1A); + T1Z = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1V, T1W)); + T1X = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1W, T1V)); + T1R = VADD(T1N, T1Q); + T1T = VSUB(T1N, T1Q); + Ts = VFNMS(LDK(KP250000000), Tr, T4); + T1i = VADD(T4, Tr); + T1f = VFNMS(LDK(KP951056516), T1e, T1d); + T1h = VFMA(LDK(KP951056516), T1e, T1d); + T19 = VFNMS(LDK(KP951056516), T16, T13); + T17 = VFMA(LDK(KP951056516), T16, T13); + ST(&(x[WS(rs, 10)]), VADD(T1m, T1B), ms, &(x[0])); + T1C = VFNMS(LDK(KP250000000), T1B, T1m); + ST(&(x[0]), VADD(T1K, T1R), ms, &(x[0])); + T1S = VFNMS(LDK(KP250000000), T1R, T1K); + T1a = VFNMS(LDK(KP559016994), Tt, Ts); + Tu = VFMA(LDK(KP559016994), Tt, Ts); + ST(&(x[WS(rs, 5)]), VFMAI(T1j, T1i), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 15)]), VFNMSI(T1j, T1i), ms, &(x[WS(rs, 1)])); + } + } + } + { + V T1E, T1I, T1U, T1Y; + T1E = VFNMS(LDK(KP559016994), T1D, T1C); + T1I = VFMA(LDK(KP559016994), T1D, T1C); + T1U = VFMA(LDK(KP559016994), T1T, T1S); + T1Y = VFNMS(LDK(KP559016994), T1T, T1S); + { + V T1c, T1g, T18, TS; + T1c = VFMA(LDK(KP951056516), T1b, T1a); + T1g = VFNMS(LDK(KP951056516), T1b, T1a); + T18 = VFMA(LDK(KP951056516), TR, Tu); + TS = VFNMS(LDK(KP951056516), TR, Tu); + ST(&(x[WS(rs, 18)]), VFMAI(T1H, T1E), ms, &(x[0])); + ST(&(x[WS(rs, 2)]), VFNMSI(T1H, T1E), ms, &(x[0])); + ST(&(x[WS(rs, 14)]), VFNMSI(T1J, T1I), ms, &(x[0])); + ST(&(x[WS(rs, 6)]), VFMAI(T1J, T1I), ms, &(x[0])); + ST(&(x[WS(rs, 16)]), VFMAI(T1X, T1U), ms, &(x[0])); + ST(&(x[WS(rs, 4)]), VFNMSI(T1X, T1U), ms, &(x[0])); + ST(&(x[WS(rs, 12)]), VFNMSI(T1Z, T1Y), ms, &(x[0])); + ST(&(x[WS(rs, 8)]), VFMAI(T1Z, T1Y), ms, &(x[0])); + ST(&(x[WS(rs, 17)]), VFMAI(T1f, T1c), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 3)]), VFNMSI(T1f, T1c), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 13)]), VFMAI(T1h, T1g), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 7)]), VFNMSI(T1h, T1g), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 9)]), VFMAI(T19, T18), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 11)]), VFNMSI(T19, T18), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 1)]), VFMAI(T17, TS), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 19)]), VFNMSI(T17, TS), ms, &(x[WS(rs, 1)])); + } + } + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 2), + VTW(0, 3), + VTW(0, 4), + VTW(0, 5), + VTW(0, 6), + VTW(0, 7), + VTW(0, 8), + VTW(0, 9), + VTW(0, 10), + VTW(0, 11), + VTW(0, 12), + VTW(0, 13), + VTW(0, 14), + VTW(0, 15), + VTW(0, 16), + VTW(0, 17), + VTW(0, 18), + VTW(0, 19), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 20, XSIMD_STRING("t2bv_20"), twinstr, &GENUS, {77, 42, 46, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t2bv_20) (planner *p) { + X(kdft_dit_register) (p, t2bv_20, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 20 -name t2bv_20 -include t2b.h -sign 1 */ + +/* + * This function contains 123 FP additions, 62 FP multiplications, + * (or, 111 additions, 50 multiplications, 12 fused multiply/add), + * 54 stack variables, 4 constants, and 40 memory accesses + */ +#include "t2b.h" + +static void t2bv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP587785252, +0.587785252292473129168705954639072768597652438); + DVK(KP951056516, +0.951056516295153572116439333379382143405698634); + DVK(KP250000000, +0.250000000000000000000000000000000000000000000); + DVK(KP559016994, +0.559016994374947424102293417182819058860154590); + { + INT m; + R *x; + x = ii; + for (m = mb, W = W + (mb * ((TWVL / VL) * 38)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 38), MAKE_VOLATILE_STRIDE(20, rs)) { + V T4, T10, T1B, T1R, TF, T14, T15, TQ, Tf, Tq, Tr, T1N, T1O, T1P, T1t; + V T1w, T1D, TT, TU, T11, T1K, T1L, T1M, T1m, T1p, T1C, T1i, T1j; + { + V T1, TZ, T3, TX, TY, T2, TW, T1z, T1A; + T1 = LD(&(x[0]), ms, &(x[0])); + TY = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); + TZ = BYTW(&(W[TWVL * 28]), TY); + T2 = LD(&(x[WS(rs, 10)]), ms, &(x[0])); + T3 = BYTW(&(W[TWVL * 18]), T2); + TW = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + TX = BYTW(&(W[TWVL * 8]), TW); + T4 = VSUB(T1, T3); + T10 = VSUB(TX, TZ); + T1z = VADD(T1, T3); + T1A = VADD(TX, TZ); + T1B = VSUB(T1z, T1A); + T1R = VADD(T1z, T1A); + } + { + V T9, T1k, TK, T1s, TP, T1v, Te, T1n, Tk, T1r, Tz, T1l, TE, T1o, Tp; + V T1u; + { + V T6, T8, T5, T7; + T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + T6 = BYTW(&(W[TWVL * 6]), T5); + T7 = LD(&(x[WS(rs, 14)]), ms, &(x[0])); + T8 = BYTW(&(W[TWVL * 26]), T7); + T9 = VSUB(T6, T8); + T1k = VADD(T6, T8); + } + { + V TH, TJ, TG, TI; + TG = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); + TH = BYTW(&(W[TWVL * 24]), TG); + TI = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + TJ = BYTW(&(W[TWVL * 4]), TI); + TK = VSUB(TH, TJ); + T1s = VADD(TH, TJ); + } + { + V TM, TO, TL, TN; + TL = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)])); + TM = BYTW(&(W[TWVL * 32]), TL); + TN = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + TO = BYTW(&(W[TWVL * 12]), TN); + TP = VSUB(TM, TO); + T1v = VADD(TM, TO); + } + { + V Tb, Td, Ta, Tc; + Ta = LD(&(x[WS(rs, 16)]), ms, &(x[0])); + Tb = BYTW(&(W[TWVL * 30]), Ta); + Tc = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + Td = BYTW(&(W[TWVL * 10]), Tc); + Te = VSUB(Tb, Td); + T1n = VADD(Tb, Td); + } + { + V Th, Tj, Tg, Ti; + Tg = LD(&(x[WS(rs, 8)]), ms, &(x[0])); + Th = BYTW(&(W[TWVL * 14]), Tg); + Ti = LD(&(x[WS(rs, 18)]), ms, &(x[0])); + Tj = BYTW(&(W[TWVL * 34]), Ti); + Tk = VSUB(Th, Tj); + T1r = VADD(Th, Tj); + } + { + V Tw, Ty, Tv, Tx; + Tv = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); + Tw = BYTW(&(W[TWVL * 16]), Tv); + Tx = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)])); + Ty = BYTW(&(W[TWVL * 36]), Tx); + Tz = VSUB(Tw, Ty); + T1l = VADD(Tw, Ty); + } + { + V TB, TD, TA, TC; + TA = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + TB = BYTW(&(W[0]), TA); + TC = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); + TD = BYTW(&(W[TWVL * 20]), TC); + TE = VSUB(TB, TD); + T1o = VADD(TB, TD); + } + { + V Tm, To, Tl, Tn; + Tl = LD(&(x[WS(rs, 12)]), ms, &(x[0])); + Tm = BYTW(&(W[TWVL * 22]), Tl); + Tn = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + To = BYTW(&(W[TWVL * 2]), Tn); + Tp = VSUB(Tm, To); + T1u = VADD(Tm, To); + } + TF = VSUB(Tz, TE); + T14 = VSUB(T9, Te); + T15 = VSUB(Tk, Tp); + TQ = VSUB(TK, TP); + Tf = VADD(T9, Te); + Tq = VADD(Tk, Tp); + Tr = VADD(Tf, Tq); + T1N = VADD(T1r, T1s); + T1O = VADD(T1u, T1v); + T1P = VADD(T1N, T1O); + T1t = VSUB(T1r, T1s); + T1w = VSUB(T1u, T1v); + T1D = VADD(T1t, T1w); + TT = VADD(Tz, TE); + TU = VADD(TK, TP); + T11 = VADD(TT, TU); + T1K = VADD(T1k, T1l); + T1L = VADD(T1n, T1o); + T1M = VADD(T1K, T1L); + T1m = VSUB(T1k, T1l); + T1p = VSUB(T1n, T1o); + T1C = VADD(T1m, T1p); + } + T1i = VADD(T4, Tr); + T1j = VBYI(VADD(T10, T11)); + ST(&(x[WS(rs, 15)]), VSUB(T1i, T1j), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 5)]), VADD(T1i, T1j), ms, &(x[WS(rs, 1)])); + { + V T1Q, T1S, T1T, T1X, T1Z, T1V, T1W, T1Y, T1U; + T1Q = VMUL(LDK(KP559016994), VSUB(T1M, T1P)); + T1S = VADD(T1M, T1P); + T1T = VFNMS(LDK(KP250000000), T1S, T1R); + T1V = VSUB(T1K, T1L); + T1W = VSUB(T1N, T1O); + T1X = VBYI(VFMA(LDK(KP951056516), T1V, VMUL(LDK(KP587785252), T1W))); + T1Z = VBYI(VFNMS(LDK(KP951056516), T1W, VMUL(LDK(KP587785252), T1V))); + ST(&(x[0]), VADD(T1R, T1S), ms, &(x[0])); + T1Y = VSUB(T1T, T1Q); + ST(&(x[WS(rs, 8)]), VSUB(T1Y, T1Z), ms, &(x[0])); + ST(&(x[WS(rs, 12)]), VADD(T1Z, T1Y), ms, &(x[0])); + T1U = VADD(T1Q, T1T); + ST(&(x[WS(rs, 4)]), VSUB(T1U, T1X), ms, &(x[0])); + ST(&(x[WS(rs, 16)]), VADD(T1X, T1U), ms, &(x[0])); + } + { + V T1G, T1E, T1F, T1y, T1I, T1q, T1x, T1J, T1H; + T1G = VMUL(LDK(KP559016994), VSUB(T1C, T1D)); + T1E = VADD(T1C, T1D); + T1F = VFNMS(LDK(KP250000000), T1E, T1B); + T1q = VSUB(T1m, T1p); + T1x = VSUB(T1t, T1w); + T1y = VBYI(VFNMS(LDK(KP951056516), T1x, VMUL(LDK(KP587785252), T1q))); + T1I = VBYI(VFMA(LDK(KP951056516), T1q, VMUL(LDK(KP587785252), T1x))); + ST(&(x[WS(rs, 10)]), VADD(T1B, T1E), ms, &(x[0])); + T1J = VADD(T1G, T1F); + ST(&(x[WS(rs, 6)]), VADD(T1I, T1J), ms, &(x[0])); + ST(&(x[WS(rs, 14)]), VSUB(T1J, T1I), ms, &(x[0])); + T1H = VSUB(T1F, T1G); + ST(&(x[WS(rs, 2)]), VADD(T1y, T1H), ms, &(x[0])); + ST(&(x[WS(rs, 18)]), VSUB(T1H, T1y), ms, &(x[0])); + } + { + V TR, T16, T1d, T1b, T13, T1e, Tu, T1a; + TR = VFNMS(LDK(KP951056516), TQ, VMUL(LDK(KP587785252), TF)); + T16 = VFNMS(LDK(KP951056516), T15, VMUL(LDK(KP587785252), T14)); + T1d = VFMA(LDK(KP951056516), T14, VMUL(LDK(KP587785252), T15)); + T1b = VFMA(LDK(KP951056516), TF, VMUL(LDK(KP587785252), TQ)); + { + V TV, T12, Ts, Tt; + TV = VMUL(LDK(KP559016994), VSUB(TT, TU)); + T12 = VFNMS(LDK(KP250000000), T11, T10); + T13 = VSUB(TV, T12); + T1e = VADD(TV, T12); + Ts = VFNMS(LDK(KP250000000), Tr, T4); + Tt = VMUL(LDK(KP559016994), VSUB(Tf, Tq)); + Tu = VSUB(Ts, Tt); + T1a = VADD(Tt, Ts); + } + { + V TS, T17, T1g, T1h; + TS = VSUB(Tu, TR); + T17 = VBYI(VSUB(T13, T16)); + ST(&(x[WS(rs, 17)]), VSUB(TS, T17), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 3)]), VADD(TS, T17), ms, &(x[WS(rs, 1)])); + T1g = VADD(T1a, T1b); + T1h = VBYI(VSUB(T1e, T1d)); + ST(&(x[WS(rs, 11)]), VSUB(T1g, T1h), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 9)]), VADD(T1g, T1h), ms, &(x[WS(rs, 1)])); + } + { + V T18, T19, T1c, T1f; + T18 = VADD(Tu, TR); + T19 = VBYI(VADD(T16, T13)); + ST(&(x[WS(rs, 13)]), VSUB(T18, T19), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 7)]), VADD(T18, T19), ms, &(x[WS(rs, 1)])); + T1c = VSUB(T1a, T1b); + T1f = VBYI(VADD(T1d, T1e)); + ST(&(x[WS(rs, 19)]), VSUB(T1c, T1f), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 1)]), VADD(T1c, T1f), ms, &(x[WS(rs, 1)])); + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 2), + VTW(0, 3), + VTW(0, 4), + VTW(0, 5), + VTW(0, 6), + VTW(0, 7), + VTW(0, 8), + VTW(0, 9), + VTW(0, 10), + VTW(0, 11), + VTW(0, 12), + VTW(0, 13), + VTW(0, 14), + VTW(0, 15), + VTW(0, 16), + VTW(0, 17), + VTW(0, 18), + VTW(0, 19), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 20, XSIMD_STRING("t2bv_20"), twinstr, &GENUS, {111, 50, 12, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t2bv_20) (planner *p) { + X(kdft_dit_register) (p, t2bv_20, &desc); +} +#endif /* HAVE_FMA */