diff src/fftw-3.3.3/dft/simd/common/t1sv_4.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/dft/simd/common/t1sv_4.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,197 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sun Nov 25 07:39:24 EST 2012 */
+
+#include "codelet-dft.h"
+
+#ifdef HAVE_FMA
+
+/* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 4 -name t1sv_4 -include ts.h */
+
+/*
+ * This function contains 22 FP additions, 12 FP multiplications,
+ * (or, 16 additions, 6 multiplications, 6 fused multiply/add),
+ * 35 stack variables, 0 constants, and 16 memory accesses
+ */
+#include "ts.h"
+
+static void t1sv_4(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     {
+	  INT m;
+	  for (m = mb, W = W + (mb * 6); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
+	       V T1, Tv, T3, T6, T5, Ta, Td, Tc, Tg, Tj, Tt, T4, Tf, Ti, Tn;
+	       V Tb, T2, T9;
+	       T1 = LD(&(ri[0]), ms, &(ri[0]));
+	       Tv = LD(&(ii[0]), ms, &(ii[0]));
+	       T3 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
+	       T6 = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
+	       T2 = LDW(&(W[TWVL * 2]));
+	       T5 = LDW(&(W[TWVL * 3]));
+	       Ta = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
+	       Td = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
+	       T9 = LDW(&(W[0]));
+	       Tc = LDW(&(W[TWVL * 1]));
+	       Tg = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
+	       Tj = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
+	       Tt = VMUL(T2, T6);
+	       T4 = VMUL(T2, T3);
+	       Tf = LDW(&(W[TWVL * 4]));
+	       Ti = LDW(&(W[TWVL * 5]));
+	       Tn = VMUL(T9, Td);
+	       Tb = VMUL(T9, Ta);
+	       {
+		    V Tu, T7, Tp, Th, To, Te;
+		    Tu = VFNMS(T5, T3, Tt);
+		    T7 = VFMA(T5, T6, T4);
+		    Tp = VMUL(Tf, Tj);
+		    Th = VMUL(Tf, Tg);
+		    To = VFNMS(Tc, Ta, Tn);
+		    Te = VFMA(Tc, Td, Tb);
+		    {
+			 V Tw, Tx, T8, Tm, Tq, Tk;
+			 Tw = VADD(Tu, Tv);
+			 Tx = VSUB(Tv, Tu);
+			 T8 = VADD(T1, T7);
+			 Tm = VSUB(T1, T7);
+			 Tq = VFNMS(Ti, Tg, Tp);
+			 Tk = VFMA(Ti, Tj, Th);
+			 {
+			      V Ts, Tr, Tl, Ty;
+			      Ts = VADD(To, Tq);
+			      Tr = VSUB(To, Tq);
+			      Tl = VADD(Te, Tk);
+			      Ty = VSUB(Te, Tk);
+			      ST(&(ri[WS(rs, 1)]), VADD(Tm, Tr), ms, &(ri[WS(rs, 1)]));
+			      ST(&(ri[WS(rs, 3)]), VSUB(Tm, Tr), ms, &(ri[WS(rs, 1)]));
+			      ST(&(ii[WS(rs, 2)]), VSUB(Tw, Ts), ms, &(ii[0]));
+			      ST(&(ii[0]), VADD(Ts, Tw), ms, &(ii[0]));
+			      ST(&(ii[WS(rs, 3)]), VADD(Ty, Tx), ms, &(ii[WS(rs, 1)]));
+			      ST(&(ii[WS(rs, 1)]), VSUB(Tx, Ty), ms, &(ii[WS(rs, 1)]));
+			      ST(&(ri[0]), VADD(T8, Tl), ms, &(ri[0]));
+			      ST(&(ri[WS(rs, 2)]), VSUB(T8, Tl), ms, &(ri[0]));
+			 }
+		    }
+	       }
+	  }
+     }
+     VLEAVE();
+}
+
+static const tw_instr twinstr[] = {
+     VTW(0, 1),
+     VTW(0, 2),
+     VTW(0, 3),
+     {TW_NEXT, (2 * VL), 0}
+};
+
+static const ct_desc desc = { 4, XSIMD_STRING("t1sv_4"), twinstr, &GENUS, {16, 6, 6, 0}, 0, 0, 0 };
+
+void XSIMD(codelet_t1sv_4) (planner *p) {
+     X(kdft_dit_register) (p, t1sv_4, &desc);
+}
+#else				/* HAVE_FMA */
+
+/* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -n 4 -name t1sv_4 -include ts.h */
+
+/*
+ * This function contains 22 FP additions, 12 FP multiplications,
+ * (or, 16 additions, 6 multiplications, 6 fused multiply/add),
+ * 13 stack variables, 0 constants, and 16 memory accesses
+ */
+#include "ts.h"
+
+static void t1sv_4(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     {
+	  INT m;
+	  for (m = mb, W = W + (mb * 6); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
+	       V T1, Tp, T6, To, Tc, Tk, Th, Tl;
+	       T1 = LD(&(ri[0]), ms, &(ri[0]));
+	       Tp = LD(&(ii[0]), ms, &(ii[0]));
+	       {
+		    V T3, T5, T2, T4;
+		    T3 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
+		    T5 = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
+		    T2 = LDW(&(W[TWVL * 2]));
+		    T4 = LDW(&(W[TWVL * 3]));
+		    T6 = VFMA(T2, T3, VMUL(T4, T5));
+		    To = VFNMS(T4, T3, VMUL(T2, T5));
+	       }
+	       {
+		    V T9, Tb, T8, Ta;
+		    T9 = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
+		    Tb = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
+		    T8 = LDW(&(W[0]));
+		    Ta = LDW(&(W[TWVL * 1]));
+		    Tc = VFMA(T8, T9, VMUL(Ta, Tb));
+		    Tk = VFNMS(Ta, T9, VMUL(T8, Tb));
+	       }
+	       {
+		    V Te, Tg, Td, Tf;
+		    Te = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
+		    Tg = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
+		    Td = LDW(&(W[TWVL * 4]));
+		    Tf = LDW(&(W[TWVL * 5]));
+		    Th = VFMA(Td, Te, VMUL(Tf, Tg));
+		    Tl = VFNMS(Tf, Te, VMUL(Td, Tg));
+	       }
+	       {
+		    V T7, Ti, Tn, Tq;
+		    T7 = VADD(T1, T6);
+		    Ti = VADD(Tc, Th);
+		    ST(&(ri[WS(rs, 2)]), VSUB(T7, Ti), ms, &(ri[0]));
+		    ST(&(ri[0]), VADD(T7, Ti), ms, &(ri[0]));
+		    Tn = VADD(Tk, Tl);
+		    Tq = VADD(To, Tp);
+		    ST(&(ii[0]), VADD(Tn, Tq), ms, &(ii[0]));
+		    ST(&(ii[WS(rs, 2)]), VSUB(Tq, Tn), ms, &(ii[0]));
+	       }
+	       {
+		    V Tj, Tm, Tr, Ts;
+		    Tj = VSUB(T1, T6);
+		    Tm = VSUB(Tk, Tl);
+		    ST(&(ri[WS(rs, 3)]), VSUB(Tj, Tm), ms, &(ri[WS(rs, 1)]));
+		    ST(&(ri[WS(rs, 1)]), VADD(Tj, Tm), ms, &(ri[WS(rs, 1)]));
+		    Tr = VSUB(Tp, To);
+		    Ts = VSUB(Tc, Th);
+		    ST(&(ii[WS(rs, 1)]), VSUB(Tr, Ts), ms, &(ii[WS(rs, 1)]));
+		    ST(&(ii[WS(rs, 3)]), VADD(Ts, Tr), ms, &(ii[WS(rs, 1)]));
+	       }
+	  }
+     }
+     VLEAVE();
+}
+
+static const tw_instr twinstr[] = {
+     VTW(0, 1),
+     VTW(0, 2),
+     VTW(0, 3),
+     {TW_NEXT, (2 * VL), 0}
+};
+
+static const ct_desc desc = { 4, XSIMD_STRING("t1sv_4"), twinstr, &GENUS, {16, 6, 6, 0}, 0, 0, 0 };
+
+void XSIMD(codelet_t1sv_4) (planner *p) {
+     X(kdft_dit_register) (p, t1sv_4, &desc);
+}
+#endif				/* HAVE_FMA */