Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/simd/common/t1fv_9.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/simd/common/t1fv_9.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,296 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:38:02 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1fv_9 -include t1f.h */ + +/* + * This function contains 54 FP additions, 54 FP multiplications, + * (or, 20 additions, 20 multiplications, 34 fused multiply/add), + * 67 stack variables, 19 constants, and 18 memory accesses + */ +#include "t1f.h" + +static void t1fv_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP939692620, +0.939692620785908384054109277324731469936208134); + DVK(KP826351822, +0.826351822333069651148283373230685203999624323); + DVK(KP879385241, +0.879385241571816768108218554649462939872416269); + DVK(KP984807753, +0.984807753012208059366743024589523013670643252); + DVK(KP666666666, +0.666666666666666666666666666666666666666666667); + DVK(KP852868531, +0.852868531952443209628250963940074071936020296); + DVK(KP907603734, +0.907603734547952313649323976213898122064543220); + DVK(KP420276625, +0.420276625461206169731530603237061658838781920); + DVK(KP673648177, +0.673648177666930348851716626769314796000375677); + DVK(KP898197570, +0.898197570222573798468955502359086394667167570); + DVK(KP347296355, +0.347296355333860697703433253538629592000751354); + DVK(KP866025403, +0.866025403784438646763723170752936183471402627); + DVK(KP439692620, +0.439692620785908384054109277324731469936208134); + DVK(KP203604859, +0.203604859554852403062088995281827210665664861); + DVK(KP152703644, +0.152703644666139302296566746461370407999248646); + DVK(KP586256827, +0.586256827714544512072145703099641959914944179); + DVK(KP968908795, +0.968908795874236621082202410917456709164223497); + DVK(KP726681596, +0.726681596905677465811651808188092531873167623); + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + R *x; + x = ri; + for (m = mb, W = W + (mb * ((TWVL / VL) * 16)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(9, rs)) { + V T1, T3, T5, T9, Th, Tb, Td, Tj, Tl, TD, T6; + T1 = LD(&(x[0]), ms, &(x[0])); + { + V T2, T4, T8, Tg; + T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + Tg = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + { + V Ta, Tc, Ti, Tk; + Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + Tc = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + Ti = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + Tk = LD(&(x[WS(rs, 8)]), ms, &(x[0])); + T3 = BYTWJ(&(W[TWVL * 4]), T2); + T5 = BYTWJ(&(W[TWVL * 10]), T4); + T9 = BYTWJ(&(W[0]), T8); + Th = BYTWJ(&(W[TWVL * 2]), Tg); + Tb = BYTWJ(&(W[TWVL * 6]), Ta); + Td = BYTWJ(&(W[TWVL * 12]), Tc); + Tj = BYTWJ(&(W[TWVL * 8]), Ti); + Tl = BYTWJ(&(W[TWVL * 14]), Tk); + } + } + TD = VSUB(T5, T3); + T6 = VADD(T3, T5); + { + V Tt, Te, Tu, Tm, Tr, T7; + Tt = VSUB(Tb, Td); + Te = VADD(Tb, Td); + Tu = VSUB(Tl, Tj); + Tm = VADD(Tj, Tl); + Tr = VFNMS(LDK(KP500000000), T6, T1); + T7 = VADD(T1, T6); + { + V Tv, Tf, Ts, Tn; + Tv = VFNMS(LDK(KP500000000), Te, T9); + Tf = VADD(T9, Te); + Ts = VFNMS(LDK(KP500000000), Tm, Th); + Tn = VADD(Th, Tm); + { + V TG, TK, Tw, TJ, TF, TA, To, Tq; + TG = VFNMS(LDK(KP726681596), Tt, Tv); + TK = VFMA(LDK(KP968908795), Tv, Tt); + Tw = VFNMS(LDK(KP586256827), Tv, Tu); + TJ = VFNMS(LDK(KP152703644), Tu, Ts); + TF = VFMA(LDK(KP203604859), Ts, Tu); + TA = VFNMS(LDK(KP439692620), Tt, Ts); + To = VADD(Tf, Tn); + Tq = VMUL(LDK(KP866025403), VSUB(Tn, Tf)); + { + V TQ, TH, TL, TN, TB, Tp, Ty, TI, Tx; + Tx = VFNMS(LDK(KP347296355), Tw, Tt); + TQ = VFNMS(LDK(KP898197570), TG, TF); + TH = VFMA(LDK(KP898197570), TG, TF); + TL = VFMA(LDK(KP673648177), TK, TJ); + TN = VFNMS(LDK(KP673648177), TK, TJ); + TB = VFNMS(LDK(KP420276625), TA, Tu); + ST(&(x[0]), VADD(T7, To), ms, &(x[0])); + Tp = VFNMS(LDK(KP500000000), To, T7); + Ty = VFNMS(LDK(KP907603734), Tx, Ts); + TI = VFMA(LDK(KP852868531), TH, Tr); + { + V TO, TR, TM, TC, Tz, TP, TS, TE; + TO = VFNMS(LDK(KP500000000), TH, TN); + TR = VFMA(LDK(KP666666666), TL, TQ); + TM = VMUL(LDK(KP984807753), VFNMS(LDK(KP879385241), TD, TL)); + TC = VFNMS(LDK(KP826351822), TB, Tv); + ST(&(x[WS(rs, 6)]), VFNMSI(Tq, Tp), ms, &(x[0])); + ST(&(x[WS(rs, 3)]), VFMAI(Tq, Tp), ms, &(x[WS(rs, 1)])); + Tz = VFNMS(LDK(KP939692620), Ty, Tr); + TP = VFMA(LDK(KP852868531), TO, Tr); + TS = VMUL(LDK(KP866025403), VFMA(LDK(KP852868531), TR, TD)); + ST(&(x[WS(rs, 8)]), VFMAI(TM, TI), ms, &(x[0])); + ST(&(x[WS(rs, 1)]), VFNMSI(TM, TI), ms, &(x[WS(rs, 1)])); + TE = VMUL(LDK(KP984807753), VFMA(LDK(KP879385241), TD, TC)); + ST(&(x[WS(rs, 4)]), VFMAI(TS, TP), ms, &(x[0])); + ST(&(x[WS(rs, 5)]), VFNMSI(TS, TP), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 7)]), VFMAI(TE, Tz), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 2)]), VFNMSI(TE, Tz), ms, &(x[0])); + } + } + } + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 2), + VTW(0, 3), + VTW(0, 4), + VTW(0, 5), + VTW(0, 6), + VTW(0, 7), + VTW(0, 8), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 9, XSIMD_STRING("t1fv_9"), twinstr, &GENUS, {20, 20, 34, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t1fv_9) (planner *p) { + X(kdft_dit_register) (p, t1fv_9, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1fv_9 -include t1f.h */ + +/* + * This function contains 54 FP additions, 42 FP multiplications, + * (or, 38 additions, 26 multiplications, 16 fused multiply/add), + * 38 stack variables, 14 constants, and 18 memory accesses + */ +#include "t1f.h" + +static void t1fv_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP939692620, +0.939692620785908384054109277324731469936208134); + DVK(KP296198132, +0.296198132726023843175338011893050938967728390); + DVK(KP852868531, +0.852868531952443209628250963940074071936020296); + DVK(KP173648177, +0.173648177666930348851716626769314796000375677); + DVK(KP556670399, +0.556670399226419366452912952047023132968291906); + DVK(KP766044443, +0.766044443118978035202392650555416673935832457); + DVK(KP642787609, +0.642787609686539326322643409907263432907559884); + DVK(KP663413948, +0.663413948168938396205421319635891297216863310); + DVK(KP984807753, +0.984807753012208059366743024589523013670643252); + DVK(KP150383733, +0.150383733180435296639271897612501926072238258); + DVK(KP342020143, +0.342020143325668733044099614682259580763083368); + DVK(KP813797681, +0.813797681349373692844693217248393223289101568); + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + DVK(KP866025403, +0.866025403784438646763723170752936183471402627); + { + INT m; + R *x; + x = ri; + for (m = mb, W = W + (mb * ((TWVL / VL) * 16)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(9, rs)) { + V T1, T6, TA, Tt, Tf, Ts, Tw, Tn, Tv; + T1 = LD(&(x[0]), ms, &(x[0])); + { + V T3, T5, T2, T4; + T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + T3 = BYTWJ(&(W[TWVL * 4]), T2); + T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + T5 = BYTWJ(&(W[TWVL * 10]), T4); + T6 = VADD(T3, T5); + TA = VMUL(LDK(KP866025403), VSUB(T5, T3)); + } + { + V T9, Td, Tb, T8, Tc, Ta, Te; + T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + T9 = BYTWJ(&(W[0]), T8); + Tc = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + Td = BYTWJ(&(W[TWVL * 12]), Tc); + Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + Tb = BYTWJ(&(W[TWVL * 6]), Ta); + Tt = VSUB(Td, Tb); + Te = VADD(Tb, Td); + Tf = VADD(T9, Te); + Ts = VFNMS(LDK(KP500000000), Te, T9); + } + { + V Th, Tl, Tj, Tg, Tk, Ti, Tm; + Tg = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + Th = BYTWJ(&(W[TWVL * 2]), Tg); + Tk = LD(&(x[WS(rs, 8)]), ms, &(x[0])); + Tl = BYTWJ(&(W[TWVL * 14]), Tk); + Ti = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + Tj = BYTWJ(&(W[TWVL * 8]), Ti); + Tw = VSUB(Tl, Tj); + Tm = VADD(Tj, Tl); + Tn = VADD(Th, Tm); + Tv = VFNMS(LDK(KP500000000), Tm, Th); + } + { + V Tq, T7, To, Tp; + Tq = VBYI(VMUL(LDK(KP866025403), VSUB(Tn, Tf))); + T7 = VADD(T1, T6); + To = VADD(Tf, Tn); + Tp = VFNMS(LDK(KP500000000), To, T7); + ST(&(x[0]), VADD(T7, To), ms, &(x[0])); + ST(&(x[WS(rs, 3)]), VADD(Tp, Tq), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 6)]), VSUB(Tp, Tq), ms, &(x[0])); + } + { + V TI, TB, TC, TD, Tu, Tx, Ty, Tr, TH; + TI = VBYI(VSUB(VFNMS(LDK(KP342020143), Tv, VFNMS(LDK(KP150383733), Tt, VFNMS(LDK(KP984807753), Ts, VMUL(LDK(KP813797681), Tw)))), TA)); + TB = VFNMS(LDK(KP642787609), Ts, VMUL(LDK(KP663413948), Tt)); + TC = VFNMS(LDK(KP984807753), Tv, VMUL(LDK(KP150383733), Tw)); + TD = VADD(TB, TC); + Tu = VFMA(LDK(KP766044443), Ts, VMUL(LDK(KP556670399), Tt)); + Tx = VFMA(LDK(KP173648177), Tv, VMUL(LDK(KP852868531), Tw)); + Ty = VADD(Tu, Tx); + Tr = VFNMS(LDK(KP500000000), T6, T1); + TH = VFMA(LDK(KP173648177), Ts, VFNMS(LDK(KP296198132), Tw, VFNMS(LDK(KP939692620), Tv, VFNMS(LDK(KP852868531), Tt, Tr)))); + ST(&(x[WS(rs, 7)]), VSUB(TH, TI), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 2)]), VADD(TH, TI), ms, &(x[0])); + { + V Tz, TE, TF, TG; + Tz = VADD(Tr, Ty); + TE = VBYI(VADD(TA, TD)); + ST(&(x[WS(rs, 8)]), VSUB(Tz, TE), ms, &(x[0])); + ST(&(x[WS(rs, 1)]), VADD(TE, Tz), ms, &(x[WS(rs, 1)])); + TF = VFMA(LDK(KP866025403), VSUB(TB, TC), VFNMS(LDK(KP500000000), Ty, Tr)); + TG = VBYI(VADD(TA, VFNMS(LDK(KP500000000), TD, VMUL(LDK(KP866025403), VSUB(Tx, Tu))))); + ST(&(x[WS(rs, 5)]), VSUB(TF, TG), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 4)]), VADD(TF, TG), ms, &(x[0])); + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 2), + VTW(0, 3), + VTW(0, 4), + VTW(0, 5), + VTW(0, 6), + VTW(0, 7), + VTW(0, 8), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 9, XSIMD_STRING("t1fv_9"), twinstr, &GENUS, {38, 26, 16, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t1fv_9) (planner *p) { + X(kdft_dit_register) (p, t1fv_9, &desc); +} +#endif /* HAVE_FMA */