Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/simd/common/t1fv_12.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/simd/common/t1fv_12.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,315 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:38:03 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1fv_12 -include t1f.h */ + +/* + * This function contains 59 FP additions, 42 FP multiplications, + * (or, 41 additions, 24 multiplications, 18 fused multiply/add), + * 41 stack variables, 2 constants, and 24 memory accesses + */ +#include "t1f.h" + +static void t1fv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP866025403, +0.866025403784438646763723170752936183471402627); + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + R *x; + x = ri; + for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) { + V Tq, Ti, T7, TQ, Tu, TA, TU, Tk, TR, Tf, TE, TM; + { + V T9, TC, Tj, TD, Te; + { + V T1, T4, T2, Tm, Tx, To; + T1 = LD(&(x[0]), ms, &(x[0])); + T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); + T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + Tm = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); + To = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + { + V T5, T3, Tn, Ty, Tp, Td, Tb, T8, Tc, Ta; + T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0])); + T5 = BYTWJ(&(W[TWVL * 14]), T4); + T3 = BYTWJ(&(W[TWVL * 6]), T2); + Tn = BYTWJ(&(W[0]), Tm); + Ty = BYTWJ(&(W[TWVL * 16]), Tx); + Tp = BYTWJ(&(W[TWVL * 8]), To); + T9 = BYTWJ(&(W[TWVL * 10]), T8); + Td = BYTWJ(&(W[TWVL * 2]), Tc); + Tb = BYTWJ(&(W[TWVL * 18]), Ta); + { + V Th, T6, Tt, Tz; + Th = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); + TC = VSUB(T5, T3); + T6 = VADD(T3, T5); + Tt = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + Tz = VADD(Tn, Tp); + Tq = VSUB(Tn, Tp); + Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + TD = VSUB(Td, Tb); + Te = VADD(Tb, Td); + Ti = BYTWJ(&(W[TWVL * 20]), Th); + T7 = VFNMS(LDK(KP500000000), T6, T1); + TQ = VADD(T1, T6); + Tu = BYTWJ(&(W[TWVL * 4]), Tt); + TA = VFNMS(LDK(KP500000000), Tz, Ty); + TU = VADD(Ty, Tz); + } + } + } + Tk = BYTWJ(&(W[TWVL * 12]), Tj); + TR = VADD(T9, Te); + Tf = VFNMS(LDK(KP500000000), Te, T9); + TE = VSUB(TC, TD); + TM = VADD(TC, TD); + } + { + V Tv, Tl, TI, Tg, TW, TS; + Tv = VADD(Tk, Ti); + Tl = VSUB(Ti, Tk); + TI = VADD(T7, Tf); + Tg = VSUB(T7, Tf); + TW = VADD(TQ, TR); + TS = VSUB(TQ, TR); + { + V TT, Tw, TL, Tr; + TT = VADD(Tu, Tv); + Tw = VFNMS(LDK(KP500000000), Tv, Tu); + TL = VSUB(Tl, Tq); + Tr = VADD(Tl, Tq); + { + V TP, TN, TG, Ts, TO, TK, TH, TF; + { + V TX, TV, TJ, TB; + TX = VADD(TT, TU); + TV = VSUB(TT, TU); + TJ = VADD(Tw, TA); + TB = VSUB(Tw, TA); + TP = VMUL(LDK(KP866025403), VADD(TM, TL)); + TN = VMUL(LDK(KP866025403), VSUB(TL, TM)); + TG = VFNMS(LDK(KP866025403), Tr, Tg); + Ts = VFMA(LDK(KP866025403), Tr, Tg); + ST(&(x[WS(rs, 6)]), VSUB(TW, TX), ms, &(x[0])); + ST(&(x[0]), VADD(TW, TX), ms, &(x[0])); + ST(&(x[WS(rs, 3)]), VFMAI(TV, TS), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 9)]), VFNMSI(TV, TS), ms, &(x[WS(rs, 1)])); + TO = VADD(TI, TJ); + TK = VSUB(TI, TJ); + TH = VFMA(LDK(KP866025403), TE, TB); + TF = VFNMS(LDK(KP866025403), TE, TB); + } + ST(&(x[WS(rs, 4)]), VFMAI(TP, TO), ms, &(x[0])); + ST(&(x[WS(rs, 8)]), VFNMSI(TP, TO), ms, &(x[0])); + ST(&(x[WS(rs, 10)]), VFNMSI(TN, TK), ms, &(x[0])); + ST(&(x[WS(rs, 2)]), VFMAI(TN, TK), ms, &(x[0])); + ST(&(x[WS(rs, 5)]), VFNMSI(TH, TG), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 7)]), VFMAI(TH, TG), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 11)]), VFMAI(TF, Ts), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 1)]), VFNMSI(TF, Ts), ms, &(x[WS(rs, 1)])); + } + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 2), + VTW(0, 3), + VTW(0, 4), + VTW(0, 5), + VTW(0, 6), + VTW(0, 7), + VTW(0, 8), + VTW(0, 9), + VTW(0, 10), + VTW(0, 11), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 12, XSIMD_STRING("t1fv_12"), twinstr, &GENUS, {41, 24, 18, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t1fv_12) (planner *p) { + X(kdft_dit_register) (p, t1fv_12, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1fv_12 -include t1f.h */ + +/* + * This function contains 59 FP additions, 30 FP multiplications, + * (or, 55 additions, 26 multiplications, 4 fused multiply/add), + * 28 stack variables, 2 constants, and 24 memory accesses + */ +#include "t1f.h" + +static void t1fv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP866025403, +0.866025403784438646763723170752936183471402627); + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + R *x; + x = ri; + for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) { + V T1, TH, T6, TA, Tq, TE, Tv, TL, T9, TI, Te, TB, Ti, TD, Tn; + V TK; + { + V T5, T3, T4, T2; + T1 = LD(&(x[0]), ms, &(x[0])); + T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); + T5 = BYTWJ(&(W[TWVL * 14]), T4); + T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + T3 = BYTWJ(&(W[TWVL * 6]), T2); + TH = VSUB(T5, T3); + T6 = VADD(T3, T5); + TA = VFNMS(LDK(KP500000000), T6, T1); + } + { + V Tu, Ts, Tp, Tt, Tr; + Tp = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); + Tq = BYTWJ(&(W[TWVL * 16]), Tp); + Tt = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + Tu = BYTWJ(&(W[TWVL * 8]), Tt); + Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + Ts = BYTWJ(&(W[0]), Tr); + TE = VSUB(Tu, Ts); + Tv = VADD(Ts, Tu); + TL = VFNMS(LDK(KP500000000), Tv, Tq); + } + { + V Td, Tb, T8, Tc, Ta; + T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + T9 = BYTWJ(&(W[TWVL * 10]), T8); + Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + Td = BYTWJ(&(W[TWVL * 2]), Tc); + Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0])); + Tb = BYTWJ(&(W[TWVL * 18]), Ta); + TI = VSUB(Td, Tb); + Te = VADD(Tb, Td); + TB = VFNMS(LDK(KP500000000), Te, T9); + } + { + V Tm, Tk, Th, Tl, Tj; + Th = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + Ti = BYTWJ(&(W[TWVL * 4]), Th); + Tl = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); + Tm = BYTWJ(&(W[TWVL * 20]), Tl); + Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + Tk = BYTWJ(&(W[TWVL * 12]), Tj); + TD = VSUB(Tm, Tk); + Tn = VADD(Tk, Tm); + TK = VFNMS(LDK(KP500000000), Tn, Ti); + } + { + V Tg, Ty, Tx, Tz; + { + V T7, Tf, To, Tw; + T7 = VADD(T1, T6); + Tf = VADD(T9, Te); + Tg = VSUB(T7, Tf); + Ty = VADD(T7, Tf); + To = VADD(Ti, Tn); + Tw = VADD(Tq, Tv); + Tx = VBYI(VSUB(To, Tw)); + Tz = VADD(To, Tw); + } + ST(&(x[WS(rs, 9)]), VSUB(Tg, Tx), ms, &(x[WS(rs, 1)])); + ST(&(x[0]), VADD(Ty, Tz), ms, &(x[0])); + ST(&(x[WS(rs, 3)]), VADD(Tg, Tx), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 6)]), VSUB(Ty, Tz), ms, &(x[0])); + } + { + V TS, TW, TV, TX; + { + V TQ, TR, TT, TU; + TQ = VADD(TA, TB); + TR = VADD(TK, TL); + TS = VSUB(TQ, TR); + TW = VADD(TQ, TR); + TT = VADD(TD, TE); + TU = VADD(TH, TI); + TV = VBYI(VMUL(LDK(KP866025403), VSUB(TT, TU))); + TX = VBYI(VMUL(LDK(KP866025403), VADD(TU, TT))); + } + ST(&(x[WS(rs, 10)]), VSUB(TS, TV), ms, &(x[0])); + ST(&(x[WS(rs, 4)]), VADD(TW, TX), ms, &(x[0])); + ST(&(x[WS(rs, 2)]), VADD(TS, TV), ms, &(x[0])); + ST(&(x[WS(rs, 8)]), VSUB(TW, TX), ms, &(x[0])); + } + { + V TG, TP, TN, TO; + { + V TC, TF, TJ, TM; + TC = VSUB(TA, TB); + TF = VMUL(LDK(KP866025403), VSUB(TD, TE)); + TG = VSUB(TC, TF); + TP = VADD(TC, TF); + TJ = VMUL(LDK(KP866025403), VSUB(TH, TI)); + TM = VSUB(TK, TL); + TN = VBYI(VADD(TJ, TM)); + TO = VBYI(VSUB(TJ, TM)); + } + ST(&(x[WS(rs, 5)]), VSUB(TG, TN), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 11)]), VSUB(TP, TO), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 7)]), VADD(TN, TG), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 1)]), VADD(TO, TP), ms, &(x[WS(rs, 1)])); + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 2), + VTW(0, 3), + VTW(0, 4), + VTW(0, 5), + VTW(0, 6), + VTW(0, 7), + VTW(0, 8), + VTW(0, 9), + VTW(0, 10), + VTW(0, 11), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 12, XSIMD_STRING("t1fv_12"), twinstr, &GENUS, {55, 26, 4, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t1fv_12) (planner *p) { + X(kdft_dit_register) (p, t1fv_12, &desc); +} +#endif /* HAVE_FMA */