diff src/fftw-3.3.3/dft/simd/common/t1fv_12.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/dft/simd/common/t1fv_12.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,315 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sun Nov 25 07:38:03 EST 2012 */
+
+#include "codelet-dft.h"
+
+#ifdef HAVE_FMA
+
+/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1fv_12 -include t1f.h */
+
+/*
+ * This function contains 59 FP additions, 42 FP multiplications,
+ * (or, 41 additions, 24 multiplications, 18 fused multiply/add),
+ * 41 stack variables, 2 constants, and 24 memory accesses
+ */
+#include "t1f.h"
+
+static void t1fv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
+     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     {
+	  INT m;
+	  R *x;
+	  x = ri;
+	  for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) {
+	       V Tq, Ti, T7, TQ, Tu, TA, TU, Tk, TR, Tf, TE, TM;
+	       {
+		    V T9, TC, Tj, TD, Te;
+		    {
+			 V T1, T4, T2, Tm, Tx, To;
+			 T1 = LD(&(x[0]), ms, &(x[0]));
+			 T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
+			 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
+			 Tm = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
+			 Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
+			 To = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
+			 {
+			      V T5, T3, Tn, Ty, Tp, Td, Tb, T8, Tc, Ta;
+			      T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
+			      Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
+			      Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
+			      T5 = BYTWJ(&(W[TWVL * 14]), T4);
+			      T3 = BYTWJ(&(W[TWVL * 6]), T2);
+			      Tn = BYTWJ(&(W[0]), Tm);
+			      Ty = BYTWJ(&(W[TWVL * 16]), Tx);
+			      Tp = BYTWJ(&(W[TWVL * 8]), To);
+			      T9 = BYTWJ(&(W[TWVL * 10]), T8);
+			      Td = BYTWJ(&(W[TWVL * 2]), Tc);
+			      Tb = BYTWJ(&(W[TWVL * 18]), Ta);
+			      {
+				   V Th, T6, Tt, Tz;
+				   Th = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
+				   TC = VSUB(T5, T3);
+				   T6 = VADD(T3, T5);
+				   Tt = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
+				   Tz = VADD(Tn, Tp);
+				   Tq = VSUB(Tn, Tp);
+				   Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
+				   TD = VSUB(Td, Tb);
+				   Te = VADD(Tb, Td);
+				   Ti = BYTWJ(&(W[TWVL * 20]), Th);
+				   T7 = VFNMS(LDK(KP500000000), T6, T1);
+				   TQ = VADD(T1, T6);
+				   Tu = BYTWJ(&(W[TWVL * 4]), Tt);
+				   TA = VFNMS(LDK(KP500000000), Tz, Ty);
+				   TU = VADD(Ty, Tz);
+			      }
+			 }
+		    }
+		    Tk = BYTWJ(&(W[TWVL * 12]), Tj);
+		    TR = VADD(T9, Te);
+		    Tf = VFNMS(LDK(KP500000000), Te, T9);
+		    TE = VSUB(TC, TD);
+		    TM = VADD(TC, TD);
+	       }
+	       {
+		    V Tv, Tl, TI, Tg, TW, TS;
+		    Tv = VADD(Tk, Ti);
+		    Tl = VSUB(Ti, Tk);
+		    TI = VADD(T7, Tf);
+		    Tg = VSUB(T7, Tf);
+		    TW = VADD(TQ, TR);
+		    TS = VSUB(TQ, TR);
+		    {
+			 V TT, Tw, TL, Tr;
+			 TT = VADD(Tu, Tv);
+			 Tw = VFNMS(LDK(KP500000000), Tv, Tu);
+			 TL = VSUB(Tl, Tq);
+			 Tr = VADD(Tl, Tq);
+			 {
+			      V TP, TN, TG, Ts, TO, TK, TH, TF;
+			      {
+				   V TX, TV, TJ, TB;
+				   TX = VADD(TT, TU);
+				   TV = VSUB(TT, TU);
+				   TJ = VADD(Tw, TA);
+				   TB = VSUB(Tw, TA);
+				   TP = VMUL(LDK(KP866025403), VADD(TM, TL));
+				   TN = VMUL(LDK(KP866025403), VSUB(TL, TM));
+				   TG = VFNMS(LDK(KP866025403), Tr, Tg);
+				   Ts = VFMA(LDK(KP866025403), Tr, Tg);
+				   ST(&(x[WS(rs, 6)]), VSUB(TW, TX), ms, &(x[0]));
+				   ST(&(x[0]), VADD(TW, TX), ms, &(x[0]));
+				   ST(&(x[WS(rs, 3)]), VFMAI(TV, TS), ms, &(x[WS(rs, 1)]));
+				   ST(&(x[WS(rs, 9)]), VFNMSI(TV, TS), ms, &(x[WS(rs, 1)]));
+				   TO = VADD(TI, TJ);
+				   TK = VSUB(TI, TJ);
+				   TH = VFMA(LDK(KP866025403), TE, TB);
+				   TF = VFNMS(LDK(KP866025403), TE, TB);
+			      }
+			      ST(&(x[WS(rs, 4)]), VFMAI(TP, TO), ms, &(x[0]));
+			      ST(&(x[WS(rs, 8)]), VFNMSI(TP, TO), ms, &(x[0]));
+			      ST(&(x[WS(rs, 10)]), VFNMSI(TN, TK), ms, &(x[0]));
+			      ST(&(x[WS(rs, 2)]), VFMAI(TN, TK), ms, &(x[0]));
+			      ST(&(x[WS(rs, 5)]), VFNMSI(TH, TG), ms, &(x[WS(rs, 1)]));
+			      ST(&(x[WS(rs, 7)]), VFMAI(TH, TG), ms, &(x[WS(rs, 1)]));
+			      ST(&(x[WS(rs, 11)]), VFMAI(TF, Ts), ms, &(x[WS(rs, 1)]));
+			      ST(&(x[WS(rs, 1)]), VFNMSI(TF, Ts), ms, &(x[WS(rs, 1)]));
+			 }
+		    }
+	       }
+	  }
+     }
+     VLEAVE();
+}
+
+static const tw_instr twinstr[] = {
+     VTW(0, 1),
+     VTW(0, 2),
+     VTW(0, 3),
+     VTW(0, 4),
+     VTW(0, 5),
+     VTW(0, 6),
+     VTW(0, 7),
+     VTW(0, 8),
+     VTW(0, 9),
+     VTW(0, 10),
+     VTW(0, 11),
+     {TW_NEXT, VL, 0}
+};
+
+static const ct_desc desc = { 12, XSIMD_STRING("t1fv_12"), twinstr, &GENUS, {41, 24, 18, 0}, 0, 0, 0 };
+
+void XSIMD(codelet_t1fv_12) (planner *p) {
+     X(kdft_dit_register) (p, t1fv_12, &desc);
+}
+#else				/* HAVE_FMA */
+
+/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1fv_12 -include t1f.h */
+
+/*
+ * This function contains 59 FP additions, 30 FP multiplications,
+ * (or, 55 additions, 26 multiplications, 4 fused multiply/add),
+ * 28 stack variables, 2 constants, and 24 memory accesses
+ */
+#include "t1f.h"
+
+static void t1fv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
+     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     {
+	  INT m;
+	  R *x;
+	  x = ri;
+	  for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) {
+	       V T1, TH, T6, TA, Tq, TE, Tv, TL, T9, TI, Te, TB, Ti, TD, Tn;
+	       V TK;
+	       {
+		    V T5, T3, T4, T2;
+		    T1 = LD(&(x[0]), ms, &(x[0]));
+		    T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
+		    T5 = BYTWJ(&(W[TWVL * 14]), T4);
+		    T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
+		    T3 = BYTWJ(&(W[TWVL * 6]), T2);
+		    TH = VSUB(T5, T3);
+		    T6 = VADD(T3, T5);
+		    TA = VFNMS(LDK(KP500000000), T6, T1);
+	       }
+	       {
+		    V Tu, Ts, Tp, Tt, Tr;
+		    Tp = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
+		    Tq = BYTWJ(&(W[TWVL * 16]), Tp);
+		    Tt = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
+		    Tu = BYTWJ(&(W[TWVL * 8]), Tt);
+		    Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
+		    Ts = BYTWJ(&(W[0]), Tr);
+		    TE = VSUB(Tu, Ts);
+		    Tv = VADD(Ts, Tu);
+		    TL = VFNMS(LDK(KP500000000), Tv, Tq);
+	       }
+	       {
+		    V Td, Tb, T8, Tc, Ta;
+		    T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
+		    T9 = BYTWJ(&(W[TWVL * 10]), T8);
+		    Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
+		    Td = BYTWJ(&(W[TWVL * 2]), Tc);
+		    Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
+		    Tb = BYTWJ(&(W[TWVL * 18]), Ta);
+		    TI = VSUB(Td, Tb);
+		    Te = VADD(Tb, Td);
+		    TB = VFNMS(LDK(KP500000000), Te, T9);
+	       }
+	       {
+		    V Tm, Tk, Th, Tl, Tj;
+		    Th = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
+		    Ti = BYTWJ(&(W[TWVL * 4]), Th);
+		    Tl = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
+		    Tm = BYTWJ(&(W[TWVL * 20]), Tl);
+		    Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
+		    Tk = BYTWJ(&(W[TWVL * 12]), Tj);
+		    TD = VSUB(Tm, Tk);
+		    Tn = VADD(Tk, Tm);
+		    TK = VFNMS(LDK(KP500000000), Tn, Ti);
+	       }
+	       {
+		    V Tg, Ty, Tx, Tz;
+		    {
+			 V T7, Tf, To, Tw;
+			 T7 = VADD(T1, T6);
+			 Tf = VADD(T9, Te);
+			 Tg = VSUB(T7, Tf);
+			 Ty = VADD(T7, Tf);
+			 To = VADD(Ti, Tn);
+			 Tw = VADD(Tq, Tv);
+			 Tx = VBYI(VSUB(To, Tw));
+			 Tz = VADD(To, Tw);
+		    }
+		    ST(&(x[WS(rs, 9)]), VSUB(Tg, Tx), ms, &(x[WS(rs, 1)]));
+		    ST(&(x[0]), VADD(Ty, Tz), ms, &(x[0]));
+		    ST(&(x[WS(rs, 3)]), VADD(Tg, Tx), ms, &(x[WS(rs, 1)]));
+		    ST(&(x[WS(rs, 6)]), VSUB(Ty, Tz), ms, &(x[0]));
+	       }
+	       {
+		    V TS, TW, TV, TX;
+		    {
+			 V TQ, TR, TT, TU;
+			 TQ = VADD(TA, TB);
+			 TR = VADD(TK, TL);
+			 TS = VSUB(TQ, TR);
+			 TW = VADD(TQ, TR);
+			 TT = VADD(TD, TE);
+			 TU = VADD(TH, TI);
+			 TV = VBYI(VMUL(LDK(KP866025403), VSUB(TT, TU)));
+			 TX = VBYI(VMUL(LDK(KP866025403), VADD(TU, TT)));
+		    }
+		    ST(&(x[WS(rs, 10)]), VSUB(TS, TV), ms, &(x[0]));
+		    ST(&(x[WS(rs, 4)]), VADD(TW, TX), ms, &(x[0]));
+		    ST(&(x[WS(rs, 2)]), VADD(TS, TV), ms, &(x[0]));
+		    ST(&(x[WS(rs, 8)]), VSUB(TW, TX), ms, &(x[0]));
+	       }
+	       {
+		    V TG, TP, TN, TO;
+		    {
+			 V TC, TF, TJ, TM;
+			 TC = VSUB(TA, TB);
+			 TF = VMUL(LDK(KP866025403), VSUB(TD, TE));
+			 TG = VSUB(TC, TF);
+			 TP = VADD(TC, TF);
+			 TJ = VMUL(LDK(KP866025403), VSUB(TH, TI));
+			 TM = VSUB(TK, TL);
+			 TN = VBYI(VADD(TJ, TM));
+			 TO = VBYI(VSUB(TJ, TM));
+		    }
+		    ST(&(x[WS(rs, 5)]), VSUB(TG, TN), ms, &(x[WS(rs, 1)]));
+		    ST(&(x[WS(rs, 11)]), VSUB(TP, TO), ms, &(x[WS(rs, 1)]));
+		    ST(&(x[WS(rs, 7)]), VADD(TN, TG), ms, &(x[WS(rs, 1)]));
+		    ST(&(x[WS(rs, 1)]), VADD(TO, TP), ms, &(x[WS(rs, 1)]));
+	       }
+	  }
+     }
+     VLEAVE();
+}
+
+static const tw_instr twinstr[] = {
+     VTW(0, 1),
+     VTW(0, 2),
+     VTW(0, 3),
+     VTW(0, 4),
+     VTW(0, 5),
+     VTW(0, 6),
+     VTW(0, 7),
+     VTW(0, 8),
+     VTW(0, 9),
+     VTW(0, 10),
+     VTW(0, 11),
+     {TW_NEXT, VL, 0}
+};
+
+static const ct_desc desc = { 12, XSIMD_STRING("t1fv_12"), twinstr, &GENUS, {55, 26, 4, 0}, 0, 0, 0 };
+
+void XSIMD(codelet_t1fv_12) (planner *p) {
+     X(kdft_dit_register) (p, t1fv_12, &desc);
+}
+#endif				/* HAVE_FMA */