Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/simd/common/t1fuv_7.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/simd/common/t1fuv_7.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,213 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:37:59 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 7 -name t1fuv_7 -include t1fu.h */ + +/* + * This function contains 36 FP additions, 36 FP multiplications, + * (or, 15 additions, 15 multiplications, 21 fused multiply/add), + * 42 stack variables, 6 constants, and 14 memory accesses + */ +#include "t1fu.h" + +static void t1fuv_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP900968867, +0.900968867902419126236102319507445051165919162); + DVK(KP801937735, +0.801937735804838252472204639014890102331838324); + DVK(KP974927912, +0.974927912181823607018131682993931217232785801); + DVK(KP692021471, +0.692021471630095869627814897002069140197260599); + DVK(KP554958132, +0.554958132087371191422194871006410481067288862); + DVK(KP356895867, +0.356895867892209443894399510021300583399127187); + { + INT m; + R *x; + x = ri; + for (m = mb, W = W + (mb * ((TWVL / VL) * 12)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 12), MAKE_VOLATILE_STRIDE(7, rs)) { + V T1, T2, T4, Te, Tc, T9, T7; + T1 = LD(&(x[0]), ms, &(x[0])); + T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + Te = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + T9 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + T7 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + { + V T3, T5, Tf, Td, Ta, T8; + T3 = BYTWJ(&(W[0]), T2); + T5 = BYTWJ(&(W[TWVL * 10]), T4); + Tf = BYTWJ(&(W[TWVL * 6]), Te); + Td = BYTWJ(&(W[TWVL * 4]), Tc); + Ta = BYTWJ(&(W[TWVL * 8]), T9); + T8 = BYTWJ(&(W[TWVL * 2]), T7); + { + V T6, Tk, Tg, Tl, Tb, Tm; + T6 = VADD(T3, T5); + Tk = VSUB(T5, T3); + Tg = VADD(Td, Tf); + Tl = VSUB(Tf, Td); + Tb = VADD(T8, Ta); + Tm = VSUB(Ta, T8); + { + V Th, Ts, Tp, Tu, Tn, Tx, Ti, Tt; + Th = VFNMS(LDK(KP356895867), T6, Tg); + Ts = VFMA(LDK(KP554958132), Tl, Tk); + ST(&(x[0]), VADD(T1, VADD(T6, VADD(Tb, Tg))), ms, &(x[0])); + Tp = VFNMS(LDK(KP356895867), Tb, T6); + Tu = VFNMS(LDK(KP356895867), Tg, Tb); + Tn = VFMA(LDK(KP554958132), Tm, Tl); + Tx = VFNMS(LDK(KP554958132), Tk, Tm); + Ti = VFNMS(LDK(KP692021471), Th, Tb); + Tt = VMUL(LDK(KP974927912), VFMA(LDK(KP801937735), Ts, Tm)); + { + V Tq, Tv, To, Ty, Tj, Tr, Tw; + Tq = VFNMS(LDK(KP692021471), Tp, Tg); + Tv = VFNMS(LDK(KP692021471), Tu, T6); + To = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Tn, Tk)); + Ty = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Tx, Tl)); + Tj = VFNMS(LDK(KP900968867), Ti, T1); + Tr = VFNMS(LDK(KP900968867), Tq, T1); + Tw = VFNMS(LDK(KP900968867), Tv, T1); + ST(&(x[WS(rs, 2)]), VFMAI(To, Tj), ms, &(x[0])); + ST(&(x[WS(rs, 5)]), VFNMSI(To, Tj), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 1)]), VFMAI(Tt, Tr), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 6)]), VFNMSI(Tt, Tr), ms, &(x[0])); + ST(&(x[WS(rs, 3)]), VFMAI(Ty, Tw), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 4)]), VFNMSI(Ty, Tw), ms, &(x[0])); + } + } + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 2), + VTW(0, 3), + VTW(0, 4), + VTW(0, 5), + VTW(0, 6), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 7, XSIMD_STRING("t1fuv_7"), twinstr, &GENUS, {15, 15, 21, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t1fuv_7) (planner *p) { + X(kdft_dit_register) (p, t1fuv_7, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 7 -name t1fuv_7 -include t1fu.h */ + +/* + * This function contains 36 FP additions, 30 FP multiplications, + * (or, 24 additions, 18 multiplications, 12 fused multiply/add), + * 21 stack variables, 6 constants, and 14 memory accesses + */ +#include "t1fu.h" + +static void t1fuv_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP900968867, +0.900968867902419126236102319507445051165919162); + DVK(KP222520933, +0.222520933956314404288902564496794759466355569); + DVK(KP623489801, +0.623489801858733530525004884004239810632274731); + DVK(KP781831482, +0.781831482468029808708444526674057750232334519); + DVK(KP974927912, +0.974927912181823607018131682993931217232785801); + DVK(KP433883739, +0.433883739117558120475768332848358754609990728); + { + INT m; + R *x; + x = ri; + for (m = mb, W = W + (mb * ((TWVL / VL) * 12)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 12), MAKE_VOLATILE_STRIDE(7, rs)) { + V T1, Tg, Tj, T6, Ti, Tb, Tk, Tp, To; + T1 = LD(&(x[0]), ms, &(x[0])); + { + V Td, Tf, Tc, Te; + Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + Td = BYTWJ(&(W[TWVL * 4]), Tc); + Te = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + Tf = BYTWJ(&(W[TWVL * 6]), Te); + Tg = VADD(Td, Tf); + Tj = VSUB(Tf, Td); + } + { + V T3, T5, T2, T4; + T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + T3 = BYTWJ(&(W[0]), T2); + T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + T5 = BYTWJ(&(W[TWVL * 10]), T4); + T6 = VADD(T3, T5); + Ti = VSUB(T5, T3); + } + { + V T8, Ta, T7, T9; + T7 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + T8 = BYTWJ(&(W[TWVL * 2]), T7); + T9 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + Ta = BYTWJ(&(W[TWVL * 8]), T9); + Tb = VADD(T8, Ta); + Tk = VSUB(Ta, T8); + } + ST(&(x[0]), VADD(T1, VADD(T6, VADD(Tb, Tg))), ms, &(x[0])); + Tp = VBYI(VFMA(LDK(KP433883739), Ti, VFNMS(LDK(KP781831482), Tk, VMUL(LDK(KP974927912), Tj)))); + To = VFMA(LDK(KP623489801), Tb, VFNMS(LDK(KP222520933), Tg, VFNMS(LDK(KP900968867), T6, T1))); + ST(&(x[WS(rs, 4)]), VSUB(To, Tp), ms, &(x[0])); + ST(&(x[WS(rs, 3)]), VADD(To, Tp), ms, &(x[WS(rs, 1)])); + { + V Tl, Th, Tn, Tm; + Tl = VBYI(VFNMS(LDK(KP781831482), Tj, VFNMS(LDK(KP433883739), Tk, VMUL(LDK(KP974927912), Ti)))); + Th = VFMA(LDK(KP623489801), Tg, VFNMS(LDK(KP900968867), Tb, VFNMS(LDK(KP222520933), T6, T1))); + ST(&(x[WS(rs, 5)]), VSUB(Th, Tl), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 2)]), VADD(Th, Tl), ms, &(x[0])); + Tn = VBYI(VFMA(LDK(KP781831482), Ti, VFMA(LDK(KP974927912), Tk, VMUL(LDK(KP433883739), Tj)))); + Tm = VFMA(LDK(KP623489801), T6, VFNMS(LDK(KP900968867), Tg, VFNMS(LDK(KP222520933), Tb, T1))); + ST(&(x[WS(rs, 6)]), VSUB(Tm, Tn), ms, &(x[0])); + ST(&(x[WS(rs, 1)]), VADD(Tm, Tn), ms, &(x[WS(rs, 1)])); + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 2), + VTW(0, 3), + VTW(0, 4), + VTW(0, 5), + VTW(0, 6), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 7, XSIMD_STRING("t1fuv_7"), twinstr, &GENUS, {24, 18, 12, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t1fuv_7) (planner *p) { + X(kdft_dit_register) (p, t1fuv_7, &desc); +} +#endif /* HAVE_FMA */