Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/simd/common/t1fuv_10.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/simd/common/t1fuv_10.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,280 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:38:01 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name t1fuv_10 -include t1fu.h */ + +/* + * This function contains 51 FP additions, 40 FP multiplications, + * (or, 33 additions, 22 multiplications, 18 fused multiply/add), + * 43 stack variables, 4 constants, and 20 memory accesses + */ +#include "t1fu.h" + +static void t1fuv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP559016994, +0.559016994374947424102293417182819058860154590); + DVK(KP250000000, +0.250000000000000000000000000000000000000000000); + DVK(KP618033988, +0.618033988749894848204586834365638117720309180); + DVK(KP951056516, +0.951056516295153572116439333379382143405698634); + { + INT m; + R *x; + x = ri; + for (m = mb, W = W + (mb * ((TWVL / VL) * 18)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(10, rs)) { + V Td, TA, T4, Ta, Tk, TE, Tp, TF, TB, T9, T1, T2, Tb; + T1 = LD(&(x[0]), ms, &(x[0])); + T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + { + V Tg, Tn, Ti, Tl; + Tg = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + Tn = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + Ti = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); + Tl = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + { + V T6, T8, T5, Tc; + T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + { + V T3, Th, To, Tj, Tm, T7; + T7 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + T3 = BYTWJ(&(W[TWVL * 8]), T2); + Th = BYTWJ(&(W[TWVL * 6]), Tg); + To = BYTWJ(&(W[0]), Tn); + Tj = BYTWJ(&(W[TWVL * 16]), Ti); + Tm = BYTWJ(&(W[TWVL * 10]), Tl); + T6 = BYTWJ(&(W[TWVL * 2]), T5); + Td = BYTWJ(&(W[TWVL * 4]), Tc); + T8 = BYTWJ(&(W[TWVL * 12]), T7); + TA = VADD(T1, T3); + T4 = VSUB(T1, T3); + Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0])); + Tk = VSUB(Th, Tj); + TE = VADD(Th, Tj); + Tp = VSUB(Tm, To); + TF = VADD(Tm, To); + } + TB = VADD(T6, T8); + T9 = VSUB(T6, T8); + } + } + Tb = BYTWJ(&(W[TWVL * 14]), Ta); + { + V TL, TG, Tw, Tq, TC, Te; + TL = VSUB(TE, TF); + TG = VADD(TE, TF); + Tw = VSUB(Tk, Tp); + Tq = VADD(Tk, Tp); + TC = VADD(Tb, Td); + Te = VSUB(Tb, Td); + { + V TM, TD, Tv, Tf; + TM = VSUB(TB, TC); + TD = VADD(TB, TC); + Tv = VSUB(T9, Te); + Tf = VADD(T9, Te); + { + V TP, TN, TH, TJ, Tz, Tx, Tr, Tt, TI, Ts; + TP = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TL, TM)); + TN = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TM, TL)); + TH = VADD(TD, TG); + TJ = VSUB(TD, TG); + Tz = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tv, Tw)); + Tx = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tw, Tv)); + Tr = VADD(Tf, Tq); + Tt = VSUB(Tf, Tq); + ST(&(x[0]), VADD(TA, TH), ms, &(x[0])); + TI = VFNMS(LDK(KP250000000), TH, TA); + ST(&(x[WS(rs, 5)]), VADD(T4, Tr), ms, &(x[WS(rs, 1)])); + Ts = VFNMS(LDK(KP250000000), Tr, T4); + { + V TK, TO, Tu, Ty; + TK = VFNMS(LDK(KP559016994), TJ, TI); + TO = VFMA(LDK(KP559016994), TJ, TI); + Tu = VFMA(LDK(KP559016994), Tt, Ts); + Ty = VFNMS(LDK(KP559016994), Tt, Ts); + ST(&(x[WS(rs, 8)]), VFNMSI(TN, TK), ms, &(x[0])); + ST(&(x[WS(rs, 2)]), VFMAI(TN, TK), ms, &(x[0])); + ST(&(x[WS(rs, 6)]), VFNMSI(TP, TO), ms, &(x[0])); + ST(&(x[WS(rs, 4)]), VFMAI(TP, TO), ms, &(x[0])); + ST(&(x[WS(rs, 9)]), VFMAI(Tx, Tu), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 1)]), VFNMSI(Tx, Tu), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 7)]), VFMAI(Tz, Ty), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 3)]), VFNMSI(Tz, Ty), ms, &(x[WS(rs, 1)])); + } + } + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 2), + VTW(0, 3), + VTW(0, 4), + VTW(0, 5), + VTW(0, 6), + VTW(0, 7), + VTW(0, 8), + VTW(0, 9), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 10, XSIMD_STRING("t1fuv_10"), twinstr, &GENUS, {33, 22, 18, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t1fuv_10) (planner *p) { + X(kdft_dit_register) (p, t1fuv_10, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name t1fuv_10 -include t1fu.h */ + +/* + * This function contains 51 FP additions, 30 FP multiplications, + * (or, 45 additions, 24 multiplications, 6 fused multiply/add), + * 32 stack variables, 4 constants, and 20 memory accesses + */ +#include "t1fu.h" + +static void t1fuv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP587785252, +0.587785252292473129168705954639072768597652438); + DVK(KP951056516, +0.951056516295153572116439333379382143405698634); + DVK(KP250000000, +0.250000000000000000000000000000000000000000000); + DVK(KP559016994, +0.559016994374947424102293417182819058860154590); + { + INT m; + R *x; + x = ri; + for (m = mb, W = W + (mb * ((TWVL / VL) * 18)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(10, rs)) { + V Tr, TH, Tg, Tl, Tm, TA, TB, TJ, T5, Ta, Tb, TD, TE, TI, To; + V Tq, Tp; + To = LD(&(x[0]), ms, &(x[0])); + Tp = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + Tq = BYTWJ(&(W[TWVL * 8]), Tp); + Tr = VSUB(To, Tq); + TH = VADD(To, Tq); + { + V Td, Tk, Tf, Ti; + { + V Tc, Tj, Te, Th; + Tc = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + Td = BYTWJ(&(W[TWVL * 6]), Tc); + Tj = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + Tk = BYTWJ(&(W[0]), Tj); + Te = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); + Tf = BYTWJ(&(W[TWVL * 16]), Te); + Th = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + Ti = BYTWJ(&(W[TWVL * 10]), Th); + } + Tg = VSUB(Td, Tf); + Tl = VSUB(Ti, Tk); + Tm = VADD(Tg, Tl); + TA = VADD(Td, Tf); + TB = VADD(Ti, Tk); + TJ = VADD(TA, TB); + } + { + V T2, T9, T4, T7; + { + V T1, T8, T3, T6; + T1 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + T2 = BYTWJ(&(W[TWVL * 2]), T1); + T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + T9 = BYTWJ(&(W[TWVL * 4]), T8); + T3 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + T4 = BYTWJ(&(W[TWVL * 12]), T3); + T6 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); + T7 = BYTWJ(&(W[TWVL * 14]), T6); + } + T5 = VSUB(T2, T4); + Ta = VSUB(T7, T9); + Tb = VADD(T5, Ta); + TD = VADD(T2, T4); + TE = VADD(T7, T9); + TI = VADD(TD, TE); + } + { + V Tn, Ts, Tt, Tx, Tz, Tv, Tw, Ty, Tu; + Tn = VMUL(LDK(KP559016994), VSUB(Tb, Tm)); + Ts = VADD(Tb, Tm); + Tt = VFNMS(LDK(KP250000000), Ts, Tr); + Tv = VSUB(T5, Ta); + Tw = VSUB(Tg, Tl); + Tx = VBYI(VFMA(LDK(KP951056516), Tv, VMUL(LDK(KP587785252), Tw))); + Tz = VBYI(VFNMS(LDK(KP587785252), Tv, VMUL(LDK(KP951056516), Tw))); + ST(&(x[WS(rs, 5)]), VADD(Tr, Ts), ms, &(x[WS(rs, 1)])); + Ty = VSUB(Tt, Tn); + ST(&(x[WS(rs, 3)]), VSUB(Ty, Tz), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 7)]), VADD(Tz, Ty), ms, &(x[WS(rs, 1)])); + Tu = VADD(Tn, Tt); + ST(&(x[WS(rs, 1)]), VSUB(Tu, Tx), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 9)]), VADD(Tx, Tu), ms, &(x[WS(rs, 1)])); + } + { + V TM, TK, TL, TG, TO, TC, TF, TP, TN; + TM = VMUL(LDK(KP559016994), VSUB(TI, TJ)); + TK = VADD(TI, TJ); + TL = VFNMS(LDK(KP250000000), TK, TH); + TC = VSUB(TA, TB); + TF = VSUB(TD, TE); + TG = VBYI(VFNMS(LDK(KP587785252), TF, VMUL(LDK(KP951056516), TC))); + TO = VBYI(VFMA(LDK(KP951056516), TF, VMUL(LDK(KP587785252), TC))); + ST(&(x[0]), VADD(TH, TK), ms, &(x[0])); + TP = VADD(TM, TL); + ST(&(x[WS(rs, 4)]), VADD(TO, TP), ms, &(x[0])); + ST(&(x[WS(rs, 6)]), VSUB(TP, TO), ms, &(x[0])); + TN = VSUB(TL, TM); + ST(&(x[WS(rs, 2)]), VADD(TG, TN), ms, &(x[0])); + ST(&(x[WS(rs, 8)]), VSUB(TN, TG), ms, &(x[0])); + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 2), + VTW(0, 3), + VTW(0, 4), + VTW(0, 5), + VTW(0, 6), + VTW(0, 7), + VTW(0, 8), + VTW(0, 9), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 10, XSIMD_STRING("t1fuv_10"), twinstr, &GENUS, {45, 24, 6, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t1fuv_10) (planner *p) { + X(kdft_dit_register) (p, t1fuv_10, &desc); +} +#endif /* HAVE_FMA */