Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/simd/common/t1bv_9.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/simd/common/t1bv_9.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,296 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:39:04 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1bv_9 -include t1b.h -sign 1 */ + +/* + * This function contains 54 FP additions, 54 FP multiplications, + * (or, 20 additions, 20 multiplications, 34 fused multiply/add), + * 67 stack variables, 19 constants, and 18 memory accesses + */ +#include "t1b.h" + +static void t1bv_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP939692620, +0.939692620785908384054109277324731469936208134); + DVK(KP907603734, +0.907603734547952313649323976213898122064543220); + DVK(KP666666666, +0.666666666666666666666666666666666666666666667); + DVK(KP852868531, +0.852868531952443209628250963940074071936020296); + DVK(KP879385241, +0.879385241571816768108218554649462939872416269); + DVK(KP984807753, +0.984807753012208059366743024589523013670643252); + DVK(KP826351822, +0.826351822333069651148283373230685203999624323); + DVK(KP347296355, +0.347296355333860697703433253538629592000751354); + DVK(KP898197570, +0.898197570222573798468955502359086394667167570); + DVK(KP673648177, +0.673648177666930348851716626769314796000375677); + DVK(KP420276625, +0.420276625461206169731530603237061658838781920); + DVK(KP866025403, +0.866025403784438646763723170752936183471402627); + DVK(KP586256827, +0.586256827714544512072145703099641959914944179); + DVK(KP968908795, +0.968908795874236621082202410917456709164223497); + DVK(KP726681596, +0.726681596905677465811651808188092531873167623); + DVK(KP439692620, +0.439692620785908384054109277324731469936208134); + DVK(KP203604859, +0.203604859554852403062088995281827210665664861); + DVK(KP152703644, +0.152703644666139302296566746461370407999248646); + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + R *x; + x = ii; + for (m = mb, W = W + (mb * ((TWVL / VL) * 16)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(9, rs)) { + V T1, T3, T5, T9, Tn, Tb, Td, Th, Tj, Tx, T6; + T1 = LD(&(x[0]), ms, &(x[0])); + { + V T2, T4, T8, Tm; + T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + T8 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + Tm = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + { + V Ta, Tc, Tg, Ti; + Ta = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + Tc = LD(&(x[WS(rs, 8)]), ms, &(x[0])); + Tg = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + Ti = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + T3 = BYTW(&(W[TWVL * 4]), T2); + T5 = BYTW(&(W[TWVL * 10]), T4); + T9 = BYTW(&(W[TWVL * 2]), T8); + Tn = BYTW(&(W[0]), Tm); + Tb = BYTW(&(W[TWVL * 8]), Ta); + Td = BYTW(&(W[TWVL * 14]), Tc); + Th = BYTW(&(W[TWVL * 6]), Tg); + Tj = BYTW(&(W[TWVL * 12]), Ti); + } + } + Tx = VSUB(T3, T5); + T6 = VADD(T3, T5); + { + V Tl, Te, Tk, To, T7, TN; + Tl = VSUB(Td, Tb); + Te = VADD(Tb, Td); + Tk = VSUB(Th, Tj); + To = VADD(Th, Tj); + T7 = VFNMS(LDK(KP500000000), T6, T1); + TN = VADD(T1, T6); + { + V Tf, TP, Tp, TO; + Tf = VFNMS(LDK(KP500000000), Te, T9); + TP = VADD(T9, Te); + Tp = VFNMS(LDK(KP500000000), To, Tn); + TO = VADD(Tn, To); + { + V Tz, TC, Tu, TD, TA, Tq, TQ, TS; + Tz = VFNMS(LDK(KP152703644), Tl, Tf); + TC = VFMA(LDK(KP203604859), Tf, Tl); + Tu = VFNMS(LDK(KP439692620), Tk, Tf); + TD = VFNMS(LDK(KP726681596), Tk, Tp); + TA = VFMA(LDK(KP968908795), Tp, Tk); + Tq = VFNMS(LDK(KP586256827), Tp, Tl); + TQ = VADD(TO, TP); + TS = VMUL(LDK(KP866025403), VSUB(TO, TP)); + { + V TI, TB, TH, TE, Tr, TR, Tw, Tv; + Tv = VFNMS(LDK(KP420276625), Tu, Tl); + TI = VFMA(LDK(KP673648177), TA, Tz); + TB = VFNMS(LDK(KP673648177), TA, Tz); + TH = VFNMS(LDK(KP898197570), TD, TC); + TE = VFMA(LDK(KP898197570), TD, TC); + Tr = VFNMS(LDK(KP347296355), Tq, Tk); + ST(&(x[0]), VADD(TQ, TN), ms, &(x[0])); + TR = VFNMS(LDK(KP500000000), TQ, TN); + Tw = VFNMS(LDK(KP826351822), Tv, Tp); + { + V TM, TL, TF, TJ, Ts, Ty, TG, TK, Tt; + TM = VMUL(LDK(KP984807753), VFMA(LDK(KP879385241), Tx, TI)); + TL = VFMA(LDK(KP852868531), TE, T7); + TF = VFNMS(LDK(KP500000000), TE, TB); + TJ = VFMA(LDK(KP666666666), TI, TH); + Ts = VFNMS(LDK(KP907603734), Tr, Tf); + ST(&(x[WS(rs, 6)]), VFNMSI(TS, TR), ms, &(x[0])); + ST(&(x[WS(rs, 3)]), VFMAI(TS, TR), ms, &(x[WS(rs, 1)])); + Ty = VMUL(LDK(KP984807753), VFNMS(LDK(KP879385241), Tx, Tw)); + ST(&(x[WS(rs, 8)]), VFNMSI(TM, TL), ms, &(x[0])); + ST(&(x[WS(rs, 1)]), VFMAI(TM, TL), ms, &(x[WS(rs, 1)])); + TG = VFMA(LDK(KP852868531), TF, T7); + TK = VMUL(LDK(KP866025403), VFNMS(LDK(KP852868531), TJ, Tx)); + Tt = VFNMS(LDK(KP939692620), Ts, T7); + ST(&(x[WS(rs, 5)]), VFNMSI(TK, TG), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 4)]), VFMAI(TK, TG), ms, &(x[0])); + ST(&(x[WS(rs, 2)]), VFMAI(Ty, Tt), ms, &(x[0])); + ST(&(x[WS(rs, 7)]), VFNMSI(Ty, Tt), ms, &(x[WS(rs, 1)])); + } + } + } + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 2), + VTW(0, 3), + VTW(0, 4), + VTW(0, 5), + VTW(0, 6), + VTW(0, 7), + VTW(0, 8), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 9, XSIMD_STRING("t1bv_9"), twinstr, &GENUS, {20, 20, 34, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t1bv_9) (planner *p) { + X(kdft_dit_register) (p, t1bv_9, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1bv_9 -include t1b.h -sign 1 */ + +/* + * This function contains 54 FP additions, 42 FP multiplications, + * (or, 38 additions, 26 multiplications, 16 fused multiply/add), + * 38 stack variables, 14 constants, and 18 memory accesses + */ +#include "t1b.h" + +static void t1bv_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP939692620, +0.939692620785908384054109277324731469936208134); + DVK(KP296198132, +0.296198132726023843175338011893050938967728390); + DVK(KP852868531, +0.852868531952443209628250963940074071936020296); + DVK(KP173648177, +0.173648177666930348851716626769314796000375677); + DVK(KP556670399, +0.556670399226419366452912952047023132968291906); + DVK(KP766044443, +0.766044443118978035202392650555416673935832457); + DVK(KP642787609, +0.642787609686539326322643409907263432907559884); + DVK(KP663413948, +0.663413948168938396205421319635891297216863310); + DVK(KP150383733, +0.150383733180435296639271897612501926072238258); + DVK(KP342020143, +0.342020143325668733044099614682259580763083368); + DVK(KP813797681, +0.813797681349373692844693217248393223289101568); + DVK(KP984807753, +0.984807753012208059366743024589523013670643252); + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + DVK(KP866025403, +0.866025403784438646763723170752936183471402627); + { + INT m; + R *x; + x = ii; + for (m = mb, W = W + (mb * ((TWVL / VL) * 16)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(9, rs)) { + V T1, T6, Tu, Tg, Tf, TD, Tq, Tp, TE; + T1 = LD(&(x[0]), ms, &(x[0])); + { + V T3, T5, T2, T4; + T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + T3 = BYTW(&(W[TWVL * 4]), T2); + T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + T5 = BYTW(&(W[TWVL * 10]), T4); + T6 = VADD(T3, T5); + Tu = VMUL(LDK(KP866025403), VSUB(T3, T5)); + } + { + V T9, Td, Tb, T8, Tc, Ta, Te; + T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + T9 = BYTW(&(W[0]), T8); + Tc = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + Td = BYTW(&(W[TWVL * 12]), Tc); + Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + Tb = BYTW(&(W[TWVL * 6]), Ta); + Tg = VSUB(Tb, Td); + Te = VADD(Tb, Td); + Tf = VFNMS(LDK(KP500000000), Te, T9); + TD = VADD(T9, Te); + } + { + V Tj, Tn, Tl, Ti, Tm, Tk, To; + Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + Tj = BYTW(&(W[TWVL * 2]), Ti); + Tm = LD(&(x[WS(rs, 8)]), ms, &(x[0])); + Tn = BYTW(&(W[TWVL * 14]), Tm); + Tk = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + Tl = BYTW(&(W[TWVL * 8]), Tk); + Tq = VSUB(Tl, Tn); + To = VADD(Tl, Tn); + Tp = VFNMS(LDK(KP500000000), To, Tj); + TE = VADD(Tj, To); + } + { + V TF, TG, TH, TI; + TF = VBYI(VMUL(LDK(KP866025403), VSUB(TD, TE))); + TG = VADD(T1, T6); + TH = VADD(TD, TE); + TI = VFNMS(LDK(KP500000000), TH, TG); + ST(&(x[WS(rs, 3)]), VADD(TF, TI), ms, &(x[WS(rs, 1)])); + ST(&(x[0]), VADD(TG, TH), ms, &(x[0])); + ST(&(x[WS(rs, 6)]), VSUB(TI, TF), ms, &(x[0])); + } + { + V TC, Tv, Tw, Tx, Th, Tr, Ts, T7, TB; + TC = VBYI(VSUB(VFMA(LDK(KP984807753), Tf, VFMA(LDK(KP813797681), Tq, VFNMS(LDK(KP150383733), Tg, VMUL(LDK(KP342020143), Tp)))), Tu)); + Tv = VFMA(LDK(KP663413948), Tg, VMUL(LDK(KP642787609), Tf)); + Tw = VFMA(LDK(KP150383733), Tq, VMUL(LDK(KP984807753), Tp)); + Tx = VADD(Tv, Tw); + Th = VFNMS(LDK(KP556670399), Tg, VMUL(LDK(KP766044443), Tf)); + Tr = VFNMS(LDK(KP852868531), Tq, VMUL(LDK(KP173648177), Tp)); + Ts = VADD(Th, Tr); + T7 = VFNMS(LDK(KP500000000), T6, T1); + TB = VFMA(LDK(KP852868531), Tg, VFMA(LDK(KP173648177), Tf, VFMA(LDK(KP296198132), Tq, VFNMS(LDK(KP939692620), Tp, T7)))); + ST(&(x[WS(rs, 7)]), VSUB(TB, TC), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 2)]), VADD(TB, TC), ms, &(x[0])); + { + V Tt, Ty, Tz, TA; + Tt = VADD(T7, Ts); + Ty = VBYI(VADD(Tu, Tx)); + ST(&(x[WS(rs, 8)]), VSUB(Tt, Ty), ms, &(x[0])); + ST(&(x[WS(rs, 1)]), VADD(Tt, Ty), ms, &(x[WS(rs, 1)])); + Tz = VBYI(VADD(Tu, VFNMS(LDK(KP500000000), Tx, VMUL(LDK(KP866025403), VSUB(Th, Tr))))); + TA = VFMA(LDK(KP866025403), VSUB(Tw, Tv), VFNMS(LDK(KP500000000), Ts, T7)); + ST(&(x[WS(rs, 4)]), VADD(Tz, TA), ms, &(x[0])); + ST(&(x[WS(rs, 5)]), VSUB(TA, Tz), ms, &(x[WS(rs, 1)])); + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 2), + VTW(0, 3), + VTW(0, 4), + VTW(0, 5), + VTW(0, 6), + VTW(0, 7), + VTW(0, 8), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 9, XSIMD_STRING("t1bv_9"), twinstr, &GENUS, {38, 26, 16, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t1bv_9) (planner *p) { + X(kdft_dit_register) (p, t1bv_9, &desc); +} +#endif /* HAVE_FMA */