Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/simd/common/t1bv_15.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/simd/common/t1bv_15.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,422 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:39:04 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name t1bv_15 -include t1b.h -sign 1 */ + +/* + * This function contains 92 FP additions, 77 FP multiplications, + * (or, 50 additions, 35 multiplications, 42 fused multiply/add), + * 81 stack variables, 8 constants, and 30 memory accesses + */ +#include "t1b.h" + +static void t1bv_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP823639103, +0.823639103546331925877420039278190003029660514); + DVK(KP910592997, +0.910592997310029334643087372129977886038870291); + DVK(KP559016994, +0.559016994374947424102293417182819058860154590); + DVK(KP951056516, +0.951056516295153572116439333379382143405698634); + DVK(KP866025403, +0.866025403784438646763723170752936183471402627); + DVK(KP250000000, +0.250000000000000000000000000000000000000000000); + DVK(KP618033988, +0.618033988749894848204586834365638117720309180); + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + R *x; + x = ii; + for (m = mb, W = W + (mb * ((TWVL / VL) * 28)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 28), MAKE_VOLATILE_STRIDE(15, rs)) { + V Tq, Ty, Th, TV, TK, Ts, T1f, T7, Tu, TA, TC, Tj, Tk, T1g, Tf; + { + V T1, T4, T2, T9, Te; + T1 = LD(&(x[0]), ms, &(x[0])); + T4 = LD(&(x[WS(rs, 10)]), ms, &(x[0])); + T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + { + V T8, Tp, Tx, Tg; + T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); + Tg = LD(&(x[WS(rs, 12)]), ms, &(x[0])); + { + V Tb, Td, Tr, T6, Tt, Tz, TB, Ti; + { + V T5, T3, Ta, Tc; + Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0])); + Tc = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); + T5 = BYTW(&(W[TWVL * 18]), T4); + T3 = BYTW(&(W[TWVL * 8]), T2); + T9 = BYTW(&(W[TWVL * 4]), T8); + Tq = BYTW(&(W[TWVL * 10]), Tp); + Ty = BYTW(&(W[TWVL * 16]), Tx); + Th = BYTW(&(W[TWVL * 22]), Tg); + Tb = BYTW(&(W[TWVL * 14]), Ta); + Td = BYTW(&(W[TWVL * 24]), Tc); + Tr = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); + TV = VSUB(T3, T5); + T6 = VADD(T3, T5); + Tt = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + } + Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0])); + TB = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + Te = VADD(Tb, Td); + TK = VSUB(Tb, Td); + Ts = BYTW(&(W[TWVL * 20]), Tr); + T1f = VADD(T1, T6); + T7 = VFNMS(LDK(KP500000000), T6, T1); + Tu = BYTW(&(W[0]), Tt); + TA = BYTW(&(W[TWVL * 26]), Tz); + TC = BYTW(&(W[TWVL * 6]), TB); + Tj = BYTW(&(W[TWVL * 2]), Ti); + Tk = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + } + } + T1g = VADD(T9, Te); + Tf = VFNMS(LDK(KP500000000), Te, T9); + } + { + V Tv, TN, TD, TO, Tl; + Tv = VADD(Ts, Tu); + TN = VSUB(Ts, Tu); + TD = VADD(TA, TC); + TO = VSUB(TA, TC); + Tl = BYTW(&(W[TWVL * 12]), Tk); + { + V Tw, T1j, TX, TP, TE, T1k, TL, Tm; + Tw = VFNMS(LDK(KP500000000), Tv, Tq); + T1j = VADD(Tq, Tv); + TX = VADD(TN, TO); + TP = VSUB(TN, TO); + TE = VFNMS(LDK(KP500000000), TD, Ty); + T1k = VADD(Ty, TD); + TL = VSUB(Tj, Tl); + Tm = VADD(Tj, Tl); + { + V TT, TF, T1q, T1l, TW, TM, T1h, Tn; + TT = VSUB(Tw, TE); + TF = VADD(Tw, TE); + T1q = VSUB(T1j, T1k); + T1l = VADD(T1j, T1k); + TW = VADD(TK, TL); + TM = VSUB(TK, TL); + T1h = VADD(Th, Tm); + Tn = VFNMS(LDK(KP500000000), Tm, Th); + { + V T10, TY, T16, TQ, T1r, T1i, TS, To, TZ, T1e; + T10 = VSUB(TW, TX); + TY = VADD(TW, TX); + T16 = VFNMS(LDK(KP618033988), TM, TP); + TQ = VFMA(LDK(KP618033988), TP, TM); + T1r = VSUB(T1g, T1h); + T1i = VADD(T1g, T1h); + TS = VSUB(Tf, Tn); + To = VADD(Tf, Tn); + TZ = VFNMS(LDK(KP250000000), TY, TV); + T1e = VMUL(LDK(KP866025403), VADD(TV, TY)); + { + V T1u, T1s, T1o, T18, TU, TG, TI, T19, T11, T1n, T1m; + T1u = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1q, T1r)); + T1s = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1r, T1q)); + T1m = VADD(T1i, T1l); + T1o = VSUB(T1i, T1l); + T18 = VFNMS(LDK(KP618033988), TS, TT); + TU = VFMA(LDK(KP618033988), TT, TS); + TG = VADD(To, TF); + TI = VSUB(To, TF); + T19 = VFNMS(LDK(KP559016994), T10, TZ); + T11 = VFMA(LDK(KP559016994), T10, TZ); + ST(&(x[0]), VADD(T1f, T1m), ms, &(x[0])); + T1n = VFNMS(LDK(KP250000000), T1m, T1f); + { + V T1a, T1c, T14, T12, T1p, T1t, T15, TJ, T1d, TH; + T1d = VADD(T7, TG); + TH = VFNMS(LDK(KP250000000), TG, T7); + T1a = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T19, T18)); + T1c = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T19, T18)); + T14 = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T11, TU)); + T12 = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T11, TU)); + T1p = VFNMS(LDK(KP559016994), T1o, T1n); + T1t = VFMA(LDK(KP559016994), T1o, T1n); + ST(&(x[WS(rs, 10)]), VFMAI(T1e, T1d), ms, &(x[0])); + ST(&(x[WS(rs, 5)]), VFNMSI(T1e, T1d), ms, &(x[WS(rs, 1)])); + T15 = VFNMS(LDK(KP559016994), TI, TH); + TJ = VFMA(LDK(KP559016994), TI, TH); + { + V T17, T1b, T13, TR; + ST(&(x[WS(rs, 12)]), VFNMSI(T1s, T1p), ms, &(x[0])); + ST(&(x[WS(rs, 3)]), VFMAI(T1s, T1p), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 9)]), VFNMSI(T1u, T1t), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 6)]), VFMAI(T1u, T1t), ms, &(x[0])); + T17 = VFNMS(LDK(KP823639103), T16, T15); + T1b = VFMA(LDK(KP823639103), T16, T15); + T13 = VFMA(LDK(KP823639103), TQ, TJ); + TR = VFNMS(LDK(KP823639103), TQ, TJ); + ST(&(x[WS(rs, 13)]), VFMAI(T1a, T17), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 2)]), VFNMSI(T1a, T17), ms, &(x[0])); + ST(&(x[WS(rs, 8)]), VFMAI(T1c, T1b), ms, &(x[0])); + ST(&(x[WS(rs, 7)]), VFNMSI(T1c, T1b), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 11)]), VFMAI(T14, T13), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 4)]), VFNMSI(T14, T13), ms, &(x[0])); + ST(&(x[WS(rs, 14)]), VFNMSI(T12, TR), ms, &(x[0])); + ST(&(x[WS(rs, 1)]), VFMAI(T12, TR), ms, &(x[WS(rs, 1)])); + } + } + } + } + } + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 2), + VTW(0, 3), + VTW(0, 4), + VTW(0, 5), + VTW(0, 6), + VTW(0, 7), + VTW(0, 8), + VTW(0, 9), + VTW(0, 10), + VTW(0, 11), + VTW(0, 12), + VTW(0, 13), + VTW(0, 14), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 15, XSIMD_STRING("t1bv_15"), twinstr, &GENUS, {50, 35, 42, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t1bv_15) (planner *p) { + X(kdft_dit_register) (p, t1bv_15, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name t1bv_15 -include t1b.h -sign 1 */ + +/* + * This function contains 92 FP additions, 53 FP multiplications, + * (or, 78 additions, 39 multiplications, 14 fused multiply/add), + * 52 stack variables, 10 constants, and 30 memory accesses + */ +#include "t1b.h" + +static void t1bv_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP216506350, +0.216506350946109661690930792688234045867850657); + DVK(KP484122918, +0.484122918275927110647408174972799951354115213); + DVK(KP866025403, +0.866025403784438646763723170752936183471402627); + DVK(KP509036960, +0.509036960455127183450980863393907648510733164); + DVK(KP823639103, +0.823639103546331925877420039278190003029660514); + DVK(KP951056516, +0.951056516295153572116439333379382143405698634); + DVK(KP587785252, +0.587785252292473129168705954639072768597652438); + DVK(KP250000000, +0.250000000000000000000000000000000000000000000); + DVK(KP559016994, +0.559016994374947424102293417182819058860154590); + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + R *x; + x = ii; + for (m = mb, W = W + (mb * ((TWVL / VL) * 28)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 28), MAKE_VOLATILE_STRIDE(15, rs)) { + V Ts, TV, T1f, TZ, T10, Tb, Tm, Tt, T1j, T1k, T1l, TI, TM, TR, Tz; + V TD, TQ, T1g, T1h, T1i; + { + V TT, Tr, Tp, Tq, To, TU; + TT = LD(&(x[0]), ms, &(x[0])); + Tq = LD(&(x[WS(rs, 10)]), ms, &(x[0])); + Tr = BYTW(&(W[TWVL * 18]), Tq); + To = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + Tp = BYTW(&(W[TWVL * 8]), To); + Ts = VSUB(Tp, Tr); + TU = VADD(Tp, Tr); + TV = VFNMS(LDK(KP500000000), TU, TT); + T1f = VADD(TT, TU); + } + { + V Tx, TG, TK, TB, T5, Ty, Tg, TH, Tl, TL, Ta, TC; + { + V Tw, TF, TJ, TA; + Tw = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + Tx = BYTW(&(W[TWVL * 4]), Tw); + TF = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + TG = BYTW(&(W[TWVL * 10]), TF); + TJ = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); + TK = BYTW(&(W[TWVL * 16]), TJ); + TA = LD(&(x[WS(rs, 12)]), ms, &(x[0])); + TB = BYTW(&(W[TWVL * 22]), TA); + } + { + V T2, T4, T1, T3; + T1 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); + T2 = BYTW(&(W[TWVL * 14]), T1); + T3 = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); + T4 = BYTW(&(W[TWVL * 24]), T3); + T5 = VSUB(T2, T4); + Ty = VADD(T2, T4); + } + { + V Td, Tf, Tc, Te; + Tc = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); + Td = BYTW(&(W[TWVL * 20]), Tc); + Te = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + Tf = BYTW(&(W[0]), Te); + Tg = VSUB(Td, Tf); + TH = VADD(Td, Tf); + } + { + V Ti, Tk, Th, Tj; + Th = LD(&(x[WS(rs, 14)]), ms, &(x[0])); + Ti = BYTW(&(W[TWVL * 26]), Th); + Tj = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + Tk = BYTW(&(W[TWVL * 6]), Tj); + Tl = VSUB(Ti, Tk); + TL = VADD(Ti, Tk); + } + { + V T7, T9, T6, T8; + T6 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + T7 = BYTW(&(W[TWVL * 2]), T6); + T8 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + T9 = BYTW(&(W[TWVL * 12]), T8); + Ta = VSUB(T7, T9); + TC = VADD(T7, T9); + } + TZ = VSUB(T5, Ta); + T10 = VSUB(Tg, Tl); + Tb = VADD(T5, Ta); + Tm = VADD(Tg, Tl); + Tt = VADD(Tb, Tm); + T1j = VADD(TG, TH); + T1k = VADD(TK, TL); + T1l = VADD(T1j, T1k); + TI = VFNMS(LDK(KP500000000), TH, TG); + TM = VFNMS(LDK(KP500000000), TL, TK); + TR = VADD(TI, TM); + Tz = VFNMS(LDK(KP500000000), Ty, Tx); + TD = VFNMS(LDK(KP500000000), TC, TB); + TQ = VADD(Tz, TD); + T1g = VADD(Tx, Ty); + T1h = VADD(TB, TC); + T1i = VADD(T1g, T1h); + } + { + V T1o, T1m, T1n, T1s, T1t, T1q, T1r, T1u, T1p; + T1o = VMUL(LDK(KP559016994), VSUB(T1i, T1l)); + T1m = VADD(T1i, T1l); + T1n = VFNMS(LDK(KP250000000), T1m, T1f); + T1q = VSUB(T1g, T1h); + T1r = VSUB(T1j, T1k); + T1s = VBYI(VFNMS(LDK(KP951056516), T1r, VMUL(LDK(KP587785252), T1q))); + T1t = VBYI(VFMA(LDK(KP951056516), T1q, VMUL(LDK(KP587785252), T1r))); + ST(&(x[0]), VADD(T1f, T1m), ms, &(x[0])); + T1u = VADD(T1o, T1n); + ST(&(x[WS(rs, 6)]), VADD(T1t, T1u), ms, &(x[0])); + ST(&(x[WS(rs, 9)]), VSUB(T1u, T1t), ms, &(x[WS(rs, 1)])); + T1p = VSUB(T1n, T1o); + ST(&(x[WS(rs, 3)]), VSUB(T1p, T1s), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 12)]), VADD(T1s, T1p), ms, &(x[0])); + } + { + V T11, T18, T1e, TO, T16, Tv, T15, TY, T1d, T19, TE, TN; + T11 = VFMA(LDK(KP823639103), TZ, VMUL(LDK(KP509036960), T10)); + T18 = VFNMS(LDK(KP823639103), T10, VMUL(LDK(KP509036960), TZ)); + T1e = VBYI(VMUL(LDK(KP866025403), VADD(Ts, Tt))); + TE = VSUB(Tz, TD); + TN = VSUB(TI, TM); + TO = VFMA(LDK(KP951056516), TE, VMUL(LDK(KP587785252), TN)); + T16 = VFNMS(LDK(KP951056516), TN, VMUL(LDK(KP587785252), TE)); + { + V Tn, Tu, TS, TW, TX; + Tn = VMUL(LDK(KP484122918), VSUB(Tb, Tm)); + Tu = VFNMS(LDK(KP216506350), Tt, VMUL(LDK(KP866025403), Ts)); + Tv = VADD(Tn, Tu); + T15 = VSUB(Tn, Tu); + TS = VMUL(LDK(KP559016994), VSUB(TQ, TR)); + TW = VADD(TQ, TR); + TX = VFNMS(LDK(KP250000000), TW, TV); + TY = VADD(TS, TX); + T1d = VADD(TV, TW); + T19 = VSUB(TX, TS); + } + { + V TP, T12, T1b, T1c; + ST(&(x[WS(rs, 5)]), VSUB(T1d, T1e), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 10)]), VADD(T1e, T1d), ms, &(x[0])); + TP = VBYI(VADD(Tv, TO)); + T12 = VSUB(TY, T11); + ST(&(x[WS(rs, 1)]), VADD(TP, T12), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 14)]), VSUB(T12, TP), ms, &(x[0])); + T1b = VBYI(VSUB(T16, T15)); + T1c = VSUB(T19, T18); + ST(&(x[WS(rs, 7)]), VADD(T1b, T1c), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 8)]), VSUB(T1c, T1b), ms, &(x[0])); + { + V T17, T1a, T13, T14; + T17 = VBYI(VADD(T15, T16)); + T1a = VADD(T18, T19); + ST(&(x[WS(rs, 2)]), VADD(T17, T1a), ms, &(x[0])); + ST(&(x[WS(rs, 13)]), VSUB(T1a, T17), ms, &(x[WS(rs, 1)])); + T13 = VBYI(VSUB(Tv, TO)); + T14 = VADD(T11, TY); + ST(&(x[WS(rs, 4)]), VADD(T13, T14), ms, &(x[0])); + ST(&(x[WS(rs, 11)]), VSUB(T14, T13), ms, &(x[WS(rs, 1)])); + } + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 2), + VTW(0, 3), + VTW(0, 4), + VTW(0, 5), + VTW(0, 6), + VTW(0, 7), + VTW(0, 8), + VTW(0, 9), + VTW(0, 10), + VTW(0, 11), + VTW(0, 12), + VTW(0, 13), + VTW(0, 14), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 15, XSIMD_STRING("t1bv_15"), twinstr, &GENUS, {78, 39, 14, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t1bv_15) (planner *p) { + X(kdft_dit_register) (p, t1bv_15, &desc); +} +#endif /* HAVE_FMA */