Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/simd/common/t1bv_12.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/simd/common/t1bv_12.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,315 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:39:04 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1bv_12 -include t1b.h -sign 1 */ + +/* + * This function contains 59 FP additions, 42 FP multiplications, + * (or, 41 additions, 24 multiplications, 18 fused multiply/add), + * 41 stack variables, 2 constants, and 24 memory accesses + */ +#include "t1b.h" + +static void t1bv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP866025403, +0.866025403784438646763723170752936183471402627); + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + R *x; + x = ii; + for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) { + V TI, Ti, TA, T7, Tm, TE, Tw, Tk, Tf, TB, TU, TM; + { + V T9, TK, Tj, TL, Te; + { + V T1, T4, T2, Tp, Tt, Tr; + T1 = LD(&(x[0]), ms, &(x[0])); + T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); + T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + Tp = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); + Tt = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + { + V T5, T3, Tq, Tu, Ts, Td, Tb, T8, Tc, Ta; + T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0])); + T5 = BYTW(&(W[TWVL * 14]), T4); + T3 = BYTW(&(W[TWVL * 6]), T2); + Tq = BYTW(&(W[TWVL * 16]), Tp); + Tu = BYTW(&(W[TWVL * 8]), Tt); + Ts = BYTW(&(W[0]), Tr); + T9 = BYTW(&(W[TWVL * 10]), T8); + Td = BYTW(&(W[TWVL * 2]), Tc); + Tb = BYTW(&(W[TWVL * 18]), Ta); + { + V Th, T6, Tl, Tv; + Th = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + TK = VSUB(T3, T5); + T6 = VADD(T3, T5); + Tl = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); + Tv = VADD(Ts, Tu); + TI = VSUB(Tu, Ts); + Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + TL = VSUB(Tb, Td); + Te = VADD(Tb, Td); + Ti = BYTW(&(W[TWVL * 4]), Th); + TA = VFNMS(LDK(KP500000000), T6, T1); + T7 = VADD(T1, T6); + Tm = BYTW(&(W[TWVL * 20]), Tl); + TE = VFNMS(LDK(KP500000000), Tv, Tq); + Tw = VADD(Tq, Tv); + } + } + } + Tk = BYTW(&(W[TWVL * 12]), Tj); + Tf = VADD(T9, Te); + TB = VFNMS(LDK(KP500000000), Te, T9); + TU = VSUB(TK, TL); + TM = VADD(TK, TL); + } + { + V Tn, TH, TC, TQ, Ty, Tg; + Tn = VADD(Tk, Tm); + TH = VSUB(Tk, Tm); + TC = VADD(TA, TB); + TQ = VSUB(TA, TB); + Ty = VADD(T7, Tf); + Tg = VSUB(T7, Tf); + { + V To, TD, TJ, TR; + To = VADD(Ti, Tn); + TD = VFNMS(LDK(KP500000000), Tn, Ti); + TJ = VSUB(TH, TI); + TR = VADD(TH, TI); + { + V TP, TN, TW, TS, TO, TG, TX, TV; + { + V Tz, Tx, TF, TT; + Tz = VADD(To, Tw); + Tx = VSUB(To, Tw); + TF = VADD(TD, TE); + TT = VSUB(TD, TE); + TP = VMUL(LDK(KP866025403), VADD(TM, TJ)); + TN = VMUL(LDK(KP866025403), VSUB(TJ, TM)); + TW = VFMA(LDK(KP866025403), TR, TQ); + TS = VFNMS(LDK(KP866025403), TR, TQ); + ST(&(x[WS(rs, 6)]), VSUB(Ty, Tz), ms, &(x[0])); + ST(&(x[0]), VADD(Ty, Tz), ms, &(x[0])); + ST(&(x[WS(rs, 9)]), VFMAI(Tx, Tg), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 3)]), VFNMSI(Tx, Tg), ms, &(x[WS(rs, 1)])); + TO = VADD(TC, TF); + TG = VSUB(TC, TF); + TX = VFNMS(LDK(KP866025403), TU, TT); + TV = VFMA(LDK(KP866025403), TU, TT); + } + ST(&(x[WS(rs, 8)]), VFNMSI(TP, TO), ms, &(x[0])); + ST(&(x[WS(rs, 4)]), VFMAI(TP, TO), ms, &(x[0])); + ST(&(x[WS(rs, 2)]), VFMAI(TN, TG), ms, &(x[0])); + ST(&(x[WS(rs, 10)]), VFNMSI(TN, TG), ms, &(x[0])); + ST(&(x[WS(rs, 5)]), VFMAI(TX, TW), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 7)]), VFNMSI(TX, TW), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 11)]), VFNMSI(TV, TS), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 1)]), VFMAI(TV, TS), ms, &(x[WS(rs, 1)])); + } + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 2), + VTW(0, 3), + VTW(0, 4), + VTW(0, 5), + VTW(0, 6), + VTW(0, 7), + VTW(0, 8), + VTW(0, 9), + VTW(0, 10), + VTW(0, 11), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 12, XSIMD_STRING("t1bv_12"), twinstr, &GENUS, {41, 24, 18, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t1bv_12) (planner *p) { + X(kdft_dit_register) (p, t1bv_12, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1bv_12 -include t1b.h -sign 1 */ + +/* + * This function contains 59 FP additions, 30 FP multiplications, + * (or, 55 additions, 26 multiplications, 4 fused multiply/add), + * 28 stack variables, 2 constants, and 24 memory accesses + */ +#include "t1b.h" + +static void t1bv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP866025403, +0.866025403784438646763723170752936183471402627); + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + R *x; + x = ii; + for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) { + V T1, Tt, T6, T7, TB, Tq, TC, TD, T9, Tu, Te, Tf, Tx, Tl, Ty; + V Tz; + { + V T5, T3, T4, T2; + T1 = LD(&(x[0]), ms, &(x[0])); + T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); + T5 = BYTW(&(W[TWVL * 14]), T4); + T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + T3 = BYTW(&(W[TWVL * 6]), T2); + Tt = VSUB(T3, T5); + T6 = VADD(T3, T5); + T7 = VFNMS(LDK(KP500000000), T6, T1); + } + { + V Tn, Tp, Tm, TA, To; + Tm = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + Tn = BYTW(&(W[0]), Tm); + TA = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); + TB = BYTW(&(W[TWVL * 16]), TA); + To = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + Tp = BYTW(&(W[TWVL * 8]), To); + Tq = VSUB(Tn, Tp); + TC = VADD(Tn, Tp); + TD = VFNMS(LDK(KP500000000), TC, TB); + } + { + V Td, Tb, T8, Tc, Ta; + T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + T9 = BYTW(&(W[TWVL * 10]), T8); + Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + Td = BYTW(&(W[TWVL * 2]), Tc); + Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0])); + Tb = BYTW(&(W[TWVL * 18]), Ta); + Tu = VSUB(Tb, Td); + Te = VADD(Tb, Td); + Tf = VFNMS(LDK(KP500000000), Te, T9); + } + { + V Ti, Tk, Th, Tw, Tj; + Th = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + Ti = BYTW(&(W[TWVL * 12]), Th); + Tw = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + Tx = BYTW(&(W[TWVL * 4]), Tw); + Tj = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); + Tk = BYTW(&(W[TWVL * 20]), Tj); + Tl = VSUB(Ti, Tk); + Ty = VADD(Ti, Tk); + Tz = VFNMS(LDK(KP500000000), Ty, Tx); + } + { + V Ts, TG, TF, TH; + { + V Tg, Tr, Tv, TE; + Tg = VSUB(T7, Tf); + Tr = VMUL(LDK(KP866025403), VSUB(Tl, Tq)); + Ts = VSUB(Tg, Tr); + TG = VADD(Tg, Tr); + Tv = VMUL(LDK(KP866025403), VSUB(Tt, Tu)); + TE = VSUB(Tz, TD); + TF = VBYI(VADD(Tv, TE)); + TH = VBYI(VSUB(TE, Tv)); + } + ST(&(x[WS(rs, 11)]), VSUB(Ts, TF), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 5)]), VADD(TG, TH), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 1)]), VADD(Ts, TF), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 7)]), VSUB(TG, TH), ms, &(x[WS(rs, 1)])); + } + { + V TS, TW, TV, TX; + { + V TQ, TR, TT, TU; + TQ = VADD(T1, T6); + TR = VADD(T9, Te); + TS = VSUB(TQ, TR); + TW = VADD(TQ, TR); + TT = VADD(Tx, Ty); + TU = VADD(TB, TC); + TV = VBYI(VSUB(TT, TU)); + TX = VADD(TT, TU); + } + ST(&(x[WS(rs, 3)]), VSUB(TS, TV), ms, &(x[WS(rs, 1)])); + ST(&(x[0]), VADD(TW, TX), ms, &(x[0])); + ST(&(x[WS(rs, 9)]), VADD(TS, TV), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 6)]), VSUB(TW, TX), ms, &(x[0])); + } + { + V TK, TO, TN, TP; + { + V TI, TJ, TL, TM; + TI = VADD(Tl, Tq); + TJ = VADD(Tt, Tu); + TK = VBYI(VMUL(LDK(KP866025403), VSUB(TI, TJ))); + TO = VBYI(VMUL(LDK(KP866025403), VADD(TJ, TI))); + TL = VADD(T7, Tf); + TM = VADD(Tz, TD); + TN = VSUB(TL, TM); + TP = VADD(TL, TM); + } + ST(&(x[WS(rs, 2)]), VADD(TK, TN), ms, &(x[0])); + ST(&(x[WS(rs, 8)]), VSUB(TP, TO), ms, &(x[0])); + ST(&(x[WS(rs, 10)]), VSUB(TN, TK), ms, &(x[0])); + ST(&(x[WS(rs, 4)]), VADD(TO, TP), ms, &(x[0])); + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 2), + VTW(0, 3), + VTW(0, 4), + VTW(0, 5), + VTW(0, 6), + VTW(0, 7), + VTW(0, 8), + VTW(0, 9), + VTW(0, 10), + VTW(0, 11), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 12, XSIMD_STRING("t1bv_12"), twinstr, &GENUS, {55, 26, 4, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t1bv_12) (planner *p) { + X(kdft_dit_register) (p, t1bv_12, &desc); +} +#endif /* HAVE_FMA */