Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/simd/common/n2sv_8.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/simd/common/n2sv_8.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,311 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:37:47 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_notw.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name n2sv_8 -with-ostride 1 -include n2s.h -store-multiple 4 */ + +/* + * This function contains 52 FP additions, 8 FP multiplications, + * (or, 44 additions, 0 multiplications, 8 fused multiply/add), + * 58 stack variables, 1 constants, and 36 memory accesses + */ +#include "n2s.h" + +static void n2sv_8(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) +{ + DVK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT i; + for (i = v; i > 0; i = i - (2 * VL), ri = ri + ((2 * VL) * ivs), ii = ii + ((2 * VL) * ivs), ro = ro + ((2 * VL) * ovs), io = io + ((2 * VL) * ovs), MAKE_VOLATILE_STRIDE(32, is), MAKE_VOLATILE_STRIDE(32, os)) { + V TF, TJ, TD, TR, TS, TT, TU, TV, TW, TE, TX, TY, TK, TI, TZ; + V T10, T11, T12; + { + V Tb, Tn, T3, TC, Ti, TB, T6, To, Tl, Tc, Tw, Tx, T8, T9, Tr; + V Ts; + { + V T1, T2, Tg, Th, T4, T5, Tj, Tk; + T1 = LD(&(ri[0]), ivs, &(ri[0])); + T2 = LD(&(ri[WS(is, 4)]), ivs, &(ri[0])); + Tg = LD(&(ii[0]), ivs, &(ii[0])); + Th = LD(&(ii[WS(is, 4)]), ivs, &(ii[0])); + T4 = LD(&(ri[WS(is, 2)]), ivs, &(ri[0])); + T5 = LD(&(ri[WS(is, 6)]), ivs, &(ri[0])); + Tj = LD(&(ii[WS(is, 2)]), ivs, &(ii[0])); + Tk = LD(&(ii[WS(is, 6)]), ivs, &(ii[0])); + Tb = LD(&(ri[WS(is, 7)]), ivs, &(ri[WS(is, 1)])); + Tn = VSUB(T1, T2); + T3 = VADD(T1, T2); + TC = VSUB(Tg, Th); + Ti = VADD(Tg, Th); + TB = VSUB(T4, T5); + T6 = VADD(T4, T5); + To = VSUB(Tj, Tk); + Tl = VADD(Tj, Tk); + Tc = LD(&(ri[WS(is, 3)]), ivs, &(ri[WS(is, 1)])); + Tw = LD(&(ii[WS(is, 7)]), ivs, &(ii[WS(is, 1)])); + Tx = LD(&(ii[WS(is, 3)]), ivs, &(ii[WS(is, 1)])); + T8 = LD(&(ri[WS(is, 1)]), ivs, &(ri[WS(is, 1)])); + T9 = LD(&(ri[WS(is, 5)]), ivs, &(ri[WS(is, 1)])); + Tr = LD(&(ii[WS(is, 1)]), ivs, &(ii[WS(is, 1)])); + Ts = LD(&(ii[WS(is, 5)]), ivs, &(ii[WS(is, 1)])); + } + { + V TL, T7, TP, Tm, Tz, TH, Te, Tf, TO, TQ, TG, Tu, Tp, TA; + { + V Td, Tv, TN, Ty, Ta, Tq, TM, Tt; + TL = VSUB(T3, T6); + T7 = VADD(T3, T6); + Td = VADD(Tb, Tc); + Tv = VSUB(Tb, Tc); + TN = VADD(Tw, Tx); + Ty = VSUB(Tw, Tx); + Ta = VADD(T8, T9); + Tq = VSUB(T8, T9); + TM = VADD(Tr, Ts); + Tt = VSUB(Tr, Ts); + TP = VADD(Ti, Tl); + Tm = VSUB(Ti, Tl); + Tz = VSUB(Tv, Ty); + TH = VADD(Tv, Ty); + Te = VADD(Ta, Td); + Tf = VSUB(Td, Ta); + TO = VSUB(TM, TN); + TQ = VADD(TM, TN); + TG = VSUB(Tt, Tq); + Tu = VADD(Tq, Tt); + } + TF = VSUB(Tn, To); + Tp = VADD(Tn, To); + TJ = VSUB(TC, TB); + TD = VADD(TB, TC); + TR = VSUB(Tm, Tf); + STM4(&(io[6]), TR, ovs, &(io[0])); + TS = VADD(Tf, Tm); + STM4(&(io[2]), TS, ovs, &(io[0])); + TT = VADD(T7, Te); + STM4(&(ro[0]), TT, ovs, &(ro[0])); + TU = VSUB(T7, Te); + STM4(&(ro[4]), TU, ovs, &(ro[0])); + TV = VADD(TP, TQ); + STM4(&(io[0]), TV, ovs, &(io[0])); + TW = VSUB(TP, TQ); + STM4(&(io[4]), TW, ovs, &(io[0])); + TE = VSUB(Tz, Tu); + TA = VADD(Tu, Tz); + TX = VADD(TL, TO); + STM4(&(ro[2]), TX, ovs, &(ro[0])); + TY = VSUB(TL, TO); + STM4(&(ro[6]), TY, ovs, &(ro[0])); + TK = VADD(TG, TH); + TI = VSUB(TG, TH); + TZ = VFMA(LDK(KP707106781), TA, Tp); + STM4(&(ro[1]), TZ, ovs, &(ro[1])); + T10 = VFNMS(LDK(KP707106781), TA, Tp); + STM4(&(ro[5]), T10, ovs, &(ro[1])); + } + } + T11 = VFMA(LDK(KP707106781), TK, TJ); + STM4(&(io[1]), T11, ovs, &(io[1])); + T12 = VFNMS(LDK(KP707106781), TK, TJ); + STM4(&(io[5]), T12, ovs, &(io[1])); + { + V T13, T14, T15, T16; + T13 = VFMA(LDK(KP707106781), TE, TD); + STM4(&(io[3]), T13, ovs, &(io[1])); + STN4(&(io[0]), TV, T11, TS, T13, ovs); + T14 = VFNMS(LDK(KP707106781), TE, TD); + STM4(&(io[7]), T14, ovs, &(io[1])); + STN4(&(io[4]), TW, T12, TR, T14, ovs); + T15 = VFMA(LDK(KP707106781), TI, TF); + STM4(&(ro[3]), T15, ovs, &(ro[1])); + STN4(&(ro[0]), TT, TZ, TX, T15, ovs); + T16 = VFNMS(LDK(KP707106781), TI, TF); + STM4(&(ro[7]), T16, ovs, &(ro[1])); + STN4(&(ro[4]), TU, T10, TY, T16, ovs); + } + } + } + VLEAVE(); +} + +static const kdft_desc desc = { 8, XSIMD_STRING("n2sv_8"), {44, 0, 8, 0}, &GENUS, 0, 1, 0, 0 }; + +void XSIMD(codelet_n2sv_8) (planner *p) { + X(kdft_register) (p, n2sv_8, &desc); +} + +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_notw.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name n2sv_8 -with-ostride 1 -include n2s.h -store-multiple 4 */ + +/* + * This function contains 52 FP additions, 4 FP multiplications, + * (or, 52 additions, 4 multiplications, 0 fused multiply/add), + * 34 stack variables, 1 constants, and 36 memory accesses + */ +#include "n2s.h" + +static void n2sv_8(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) +{ + DVK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT i; + for (i = v; i > 0; i = i - (2 * VL), ri = ri + ((2 * VL) * ivs), ii = ii + ((2 * VL) * ivs), ro = ro + ((2 * VL) * ovs), io = io + ((2 * VL) * ovs), MAKE_VOLATILE_STRIDE(32, is), MAKE_VOLATILE_STRIDE(32, os)) { + V T3, Tn, Ti, TC, T6, TB, Tl, To, Td, TN, Tz, TH, Ta, TM, Tu; + V TG; + { + V T1, T2, Tj, Tk; + T1 = LD(&(ri[0]), ivs, &(ri[0])); + T2 = LD(&(ri[WS(is, 4)]), ivs, &(ri[0])); + T3 = VADD(T1, T2); + Tn = VSUB(T1, T2); + { + V Tg, Th, T4, T5; + Tg = LD(&(ii[0]), ivs, &(ii[0])); + Th = LD(&(ii[WS(is, 4)]), ivs, &(ii[0])); + Ti = VADD(Tg, Th); + TC = VSUB(Tg, Th); + T4 = LD(&(ri[WS(is, 2)]), ivs, &(ri[0])); + T5 = LD(&(ri[WS(is, 6)]), ivs, &(ri[0])); + T6 = VADD(T4, T5); + TB = VSUB(T4, T5); + } + Tj = LD(&(ii[WS(is, 2)]), ivs, &(ii[0])); + Tk = LD(&(ii[WS(is, 6)]), ivs, &(ii[0])); + Tl = VADD(Tj, Tk); + To = VSUB(Tj, Tk); + { + V Tb, Tc, Tv, Tw, Tx, Ty; + Tb = LD(&(ri[WS(is, 7)]), ivs, &(ri[WS(is, 1)])); + Tc = LD(&(ri[WS(is, 3)]), ivs, &(ri[WS(is, 1)])); + Tv = VSUB(Tb, Tc); + Tw = LD(&(ii[WS(is, 7)]), ivs, &(ii[WS(is, 1)])); + Tx = LD(&(ii[WS(is, 3)]), ivs, &(ii[WS(is, 1)])); + Ty = VSUB(Tw, Tx); + Td = VADD(Tb, Tc); + TN = VADD(Tw, Tx); + Tz = VSUB(Tv, Ty); + TH = VADD(Tv, Ty); + } + { + V T8, T9, Tq, Tr, Ts, Tt; + T8 = LD(&(ri[WS(is, 1)]), ivs, &(ri[WS(is, 1)])); + T9 = LD(&(ri[WS(is, 5)]), ivs, &(ri[WS(is, 1)])); + Tq = VSUB(T8, T9); + Tr = LD(&(ii[WS(is, 1)]), ivs, &(ii[WS(is, 1)])); + Ts = LD(&(ii[WS(is, 5)]), ivs, &(ii[WS(is, 1)])); + Tt = VSUB(Tr, Ts); + Ta = VADD(T8, T9); + TM = VADD(Tr, Ts); + Tu = VADD(Tq, Tt); + TG = VSUB(Tt, Tq); + } + } + { + V TR, TS, TT, TU, TV, TW, TX, TY; + { + V T7, Te, TP, TQ; + T7 = VADD(T3, T6); + Te = VADD(Ta, Td); + TR = VSUB(T7, Te); + STM4(&(ro[4]), TR, ovs, &(ro[0])); + TS = VADD(T7, Te); + STM4(&(ro[0]), TS, ovs, &(ro[0])); + TP = VADD(Ti, Tl); + TQ = VADD(TM, TN); + TT = VSUB(TP, TQ); + STM4(&(io[4]), TT, ovs, &(io[0])); + TU = VADD(TP, TQ); + STM4(&(io[0]), TU, ovs, &(io[0])); + } + { + V Tf, Tm, TL, TO; + Tf = VSUB(Td, Ta); + Tm = VSUB(Ti, Tl); + TV = VADD(Tf, Tm); + STM4(&(io[2]), TV, ovs, &(io[0])); + TW = VSUB(Tm, Tf); + STM4(&(io[6]), TW, ovs, &(io[0])); + TL = VSUB(T3, T6); + TO = VSUB(TM, TN); + TX = VSUB(TL, TO); + STM4(&(ro[6]), TX, ovs, &(ro[0])); + TY = VADD(TL, TO); + STM4(&(ro[2]), TY, ovs, &(ro[0])); + } + { + V TZ, T10, T11, T12; + { + V Tp, TA, TJ, TK; + Tp = VADD(Tn, To); + TA = VMUL(LDK(KP707106781), VADD(Tu, Tz)); + TZ = VSUB(Tp, TA); + STM4(&(ro[5]), TZ, ovs, &(ro[1])); + T10 = VADD(Tp, TA); + STM4(&(ro[1]), T10, ovs, &(ro[1])); + TJ = VSUB(TC, TB); + TK = VMUL(LDK(KP707106781), VADD(TG, TH)); + T11 = VSUB(TJ, TK); + STM4(&(io[5]), T11, ovs, &(io[1])); + T12 = VADD(TJ, TK); + STM4(&(io[1]), T12, ovs, &(io[1])); + } + { + V TD, TE, T13, T14; + TD = VADD(TB, TC); + TE = VMUL(LDK(KP707106781), VSUB(Tz, Tu)); + T13 = VSUB(TD, TE); + STM4(&(io[7]), T13, ovs, &(io[1])); + STN4(&(io[4]), TT, T11, TW, T13, ovs); + T14 = VADD(TD, TE); + STM4(&(io[3]), T14, ovs, &(io[1])); + STN4(&(io[0]), TU, T12, TV, T14, ovs); + } + { + V TF, TI, T15, T16; + TF = VSUB(Tn, To); + TI = VMUL(LDK(KP707106781), VSUB(TG, TH)); + T15 = VSUB(TF, TI); + STM4(&(ro[7]), T15, ovs, &(ro[1])); + STN4(&(ro[4]), TR, TZ, TX, T15, ovs); + T16 = VADD(TF, TI); + STM4(&(ro[3]), T16, ovs, &(ro[1])); + STN4(&(ro[0]), TS, T10, TY, T16, ovs); + } + } + } + } + } + VLEAVE(); +} + +static const kdft_desc desc = { 8, XSIMD_STRING("n2sv_8"), {52, 4, 0, 0}, &GENUS, 0, 1, 0, 0 }; + +void XSIMD(codelet_n2sv_8) (planner *p) { + X(kdft_register) (p, n2sv_8, &desc); +} + +#endif /* HAVE_FMA */