Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/simd/common/n2fv_10.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/simd/common/n2fv_10.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,277 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:37:22 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name n2fv_10 -with-ostride 2 -include n2f.h -store-multiple 2 */ + +/* + * This function contains 42 FP additions, 22 FP multiplications, + * (or, 24 additions, 4 multiplications, 18 fused multiply/add), + * 53 stack variables, 4 constants, and 25 memory accesses + */ +#include "n2f.h" + +static void n2fv_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) +{ + DVK(KP559016994, +0.559016994374947424102293417182819058860154590); + DVK(KP250000000, +0.250000000000000000000000000000000000000000000); + DVK(KP618033988, +0.618033988749894848204586834365638117720309180); + DVK(KP951056516, +0.951056516295153572116439333379382143405698634); + { + INT i; + const R *xi; + R *xo; + xi = ri; + xo = ro; + for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) { + V Tb, Tr, T3, Ts, T6, Tw, Tg, Tt, T9, Tc, T1, T2; + T1 = LD(&(xi[0]), ivs, &(xi[0])); + T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); + { + V T4, T5, Te, Tf, T7, T8; + T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); + T5 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); + Te = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); + Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); + T7 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); + T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); + Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); + Tr = VADD(T1, T2); + T3 = VSUB(T1, T2); + Ts = VADD(T4, T5); + T6 = VSUB(T4, T5); + Tw = VADD(Te, Tf); + Tg = VSUB(Te, Tf); + Tt = VADD(T7, T8); + T9 = VSUB(T7, T8); + Tc = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); + } + { + V TD, Tu, Tm, Ta, Td, Tv; + TD = VSUB(Ts, Tt); + Tu = VADD(Ts, Tt); + Tm = VSUB(T6, T9); + Ta = VADD(T6, T9); + Td = VSUB(Tb, Tc); + Tv = VADD(Tb, Tc); + { + V TC, Tx, Tn, Th; + TC = VSUB(Tv, Tw); + Tx = VADD(Tv, Tw); + Tn = VSUB(Td, Tg); + Th = VADD(Td, Tg); + { + V Ty, TA, TE, TG, Ti, Tk, To, Tq; + Ty = VADD(Tu, Tx); + TA = VSUB(Tu, Tx); + TE = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TD, TC)); + TG = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TC, TD)); + Ti = VADD(Ta, Th); + Tk = VSUB(Ta, Th); + To = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tn, Tm)); + Tq = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tm, Tn)); + { + V Tz, TH, Tj, TI; + Tz = VFNMS(LDK(KP250000000), Ty, Tr); + TH = VADD(Tr, Ty); + STM2(&(xo[0]), TH, ovs, &(xo[0])); + Tj = VFNMS(LDK(KP250000000), Ti, T3); + TI = VADD(T3, Ti); + STM2(&(xo[10]), TI, ovs, &(xo[2])); + { + V TB, TF, Tl, Tp; + TB = VFNMS(LDK(KP559016994), TA, Tz); + TF = VFMA(LDK(KP559016994), TA, Tz); + Tl = VFMA(LDK(KP559016994), Tk, Tj); + Tp = VFNMS(LDK(KP559016994), Tk, Tj); + { + V TJ, TK, TL, TM; + TJ = VFMAI(TG, TF); + STM2(&(xo[8]), TJ, ovs, &(xo[0])); + STN2(&(xo[8]), TJ, TI, ovs); + TK = VFNMSI(TG, TF); + STM2(&(xo[12]), TK, ovs, &(xo[0])); + TL = VFNMSI(TE, TB); + STM2(&(xo[16]), TL, ovs, &(xo[0])); + TM = VFMAI(TE, TB); + STM2(&(xo[4]), TM, ovs, &(xo[0])); + { + V TN, TO, TP, TQ; + TN = VFNMSI(Tq, Tp); + STM2(&(xo[6]), TN, ovs, &(xo[2])); + STN2(&(xo[4]), TM, TN, ovs); + TO = VFMAI(Tq, Tp); + STM2(&(xo[14]), TO, ovs, &(xo[2])); + STN2(&(xo[12]), TK, TO, ovs); + TP = VFMAI(To, Tl); + STM2(&(xo[18]), TP, ovs, &(xo[2])); + STN2(&(xo[16]), TL, TP, ovs); + TQ = VFNMSI(To, Tl); + STM2(&(xo[2]), TQ, ovs, &(xo[2])); + STN2(&(xo[0]), TH, TQ, ovs); + } + } + } + } + } + } + } + } + } + VLEAVE(); +} + +static const kdft_desc desc = { 10, XSIMD_STRING("n2fv_10"), {24, 4, 18, 0}, &GENUS, 0, 2, 0, 0 }; + +void XSIMD(codelet_n2fv_10) (planner *p) { + X(kdft_register) (p, n2fv_10, &desc); +} + +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name n2fv_10 -with-ostride 2 -include n2f.h -store-multiple 2 */ + +/* + * This function contains 42 FP additions, 12 FP multiplications, + * (or, 36 additions, 6 multiplications, 6 fused multiply/add), + * 36 stack variables, 4 constants, and 25 memory accesses + */ +#include "n2f.h" + +static void n2fv_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) +{ + DVK(KP250000000, +0.250000000000000000000000000000000000000000000); + DVK(KP559016994, +0.559016994374947424102293417182819058860154590); + DVK(KP587785252, +0.587785252292473129168705954639072768597652438); + DVK(KP951056516, +0.951056516295153572116439333379382143405698634); + { + INT i; + const R *xi; + R *xo; + xi = ri; + xo = ro; + for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) { + V Ti, Ty, Tm, Tn, Tw, Tt, Tz, TA, TB, T7, Te, Tj, Tg, Th; + Tg = LD(&(xi[0]), ivs, &(xi[0])); + Th = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); + Ti = VSUB(Tg, Th); + Ty = VADD(Tg, Th); + { + V T3, Tu, Td, Ts, T6, Tv, Ta, Tr; + { + V T1, T2, Tb, Tc; + T1 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); + T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); + T3 = VSUB(T1, T2); + Tu = VADD(T1, T2); + Tb = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); + Tc = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); + Td = VSUB(Tb, Tc); + Ts = VADD(Tb, Tc); + } + { + V T4, T5, T8, T9; + T4 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); + T5 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); + T6 = VSUB(T4, T5); + Tv = VADD(T4, T5); + T8 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); + T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); + Ta = VSUB(T8, T9); + Tr = VADD(T8, T9); + } + Tm = VSUB(T3, T6); + Tn = VSUB(Ta, Td); + Tw = VSUB(Tu, Tv); + Tt = VSUB(Tr, Ts); + Tz = VADD(Tu, Tv); + TA = VADD(Tr, Ts); + TB = VADD(Tz, TA); + T7 = VADD(T3, T6); + Te = VADD(Ta, Td); + Tj = VADD(T7, Te); + } + { + V TH, TI, TK, TL, TM; + TH = VADD(Ti, Tj); + STM2(&(xo[10]), TH, ovs, &(xo[2])); + TI = VADD(Ty, TB); + STM2(&(xo[0]), TI, ovs, &(xo[0])); + { + V To, Tq, Tl, Tp, Tf, Tk, TJ; + To = VBYI(VFMA(LDK(KP951056516), Tm, VMUL(LDK(KP587785252), Tn))); + Tq = VBYI(VFNMS(LDK(KP587785252), Tm, VMUL(LDK(KP951056516), Tn))); + Tf = VMUL(LDK(KP559016994), VSUB(T7, Te)); + Tk = VFNMS(LDK(KP250000000), Tj, Ti); + Tl = VADD(Tf, Tk); + Tp = VSUB(Tk, Tf); + TJ = VSUB(Tl, To); + STM2(&(xo[2]), TJ, ovs, &(xo[2])); + STN2(&(xo[0]), TI, TJ, ovs); + TK = VADD(Tq, Tp); + STM2(&(xo[14]), TK, ovs, &(xo[2])); + TL = VADD(To, Tl); + STM2(&(xo[18]), TL, ovs, &(xo[2])); + TM = VSUB(Tp, Tq); + STM2(&(xo[6]), TM, ovs, &(xo[2])); + } + { + V Tx, TF, TE, TG, TC, TD; + Tx = VBYI(VFNMS(LDK(KP587785252), Tw, VMUL(LDK(KP951056516), Tt))); + TF = VBYI(VFMA(LDK(KP951056516), Tw, VMUL(LDK(KP587785252), Tt))); + TC = VFNMS(LDK(KP250000000), TB, Ty); + TD = VMUL(LDK(KP559016994), VSUB(Tz, TA)); + TE = VSUB(TC, TD); + TG = VADD(TD, TC); + { + V TN, TO, TP, TQ; + TN = VADD(Tx, TE); + STM2(&(xo[4]), TN, ovs, &(xo[0])); + STN2(&(xo[4]), TN, TM, ovs); + TO = VSUB(TG, TF); + STM2(&(xo[12]), TO, ovs, &(xo[0])); + STN2(&(xo[12]), TO, TK, ovs); + TP = VSUB(TE, Tx); + STM2(&(xo[16]), TP, ovs, &(xo[0])); + STN2(&(xo[16]), TP, TL, ovs); + TQ = VADD(TF, TG); + STM2(&(xo[8]), TQ, ovs, &(xo[0])); + STN2(&(xo[8]), TQ, TH, ovs); + } + } + } + } + } + VLEAVE(); +} + +static const kdft_desc desc = { 10, XSIMD_STRING("n2fv_10"), {36, 6, 6, 0}, &GENUS, 0, 2, 0, 0 }; + +void XSIMD(codelet_n2fv_10) (planner *p) { + X(kdft_register) (p, n2fv_10, &desc); +} + +#endif /* HAVE_FMA */