diff src/fftw-3.3.3/dft/simd/common/n1fv_9.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/dft/simd/common/n1fv_9.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,253 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sun Nov 25 07:36:52 EST 2012 */
+
+#include "codelet-dft.h"
+
+#ifdef HAVE_FMA
+
+/* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name n1fv_9 -include n1f.h */
+
+/*
+ * This function contains 46 FP additions, 38 FP multiplications,
+ * (or, 12 additions, 4 multiplications, 34 fused multiply/add),
+ * 68 stack variables, 19 constants, and 18 memory accesses
+ */
+#include "n1f.h"
+
+static void n1fv_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
+{
+     DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
+     DVK(KP826351822, +0.826351822333069651148283373230685203999624323);
+     DVK(KP879385241, +0.879385241571816768108218554649462939872416269);
+     DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
+     DVK(KP666666666, +0.666666666666666666666666666666666666666666667);
+     DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
+     DVK(KP907603734, +0.907603734547952313649323976213898122064543220);
+     DVK(KP420276625, +0.420276625461206169731530603237061658838781920);
+     DVK(KP673648177, +0.673648177666930348851716626769314796000375677);
+     DVK(KP898197570, +0.898197570222573798468955502359086394667167570);
+     DVK(KP347296355, +0.347296355333860697703433253538629592000751354);
+     DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
+     DVK(KP439692620, +0.439692620785908384054109277324731469936208134);
+     DVK(KP203604859, +0.203604859554852403062088995281827210665664861);
+     DVK(KP152703644, +0.152703644666139302296566746461370407999248646);
+     DVK(KP586256827, +0.586256827714544512072145703099641959914944179);
+     DVK(KP968908795, +0.968908795874236621082202410917456709164223497);
+     DVK(KP726681596, +0.726681596905677465811651808188092531873167623);
+     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     {
+	  INT i;
+	  const R *xi;
+	  R *xo;
+	  xi = ri;
+	  xo = ro;
+	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(18, is), MAKE_VOLATILE_STRIDE(18, os)) {
+	       V T1, T2, T3, T6, Tb, T7, T8, Tc, Td, Tv, T4;
+	       T1 = LD(&(xi[0]), ivs, &(xi[0]));
+	       T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
+	       T3 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
+	       T6 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
+	       Tb = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
+	       T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
+	       T8 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
+	       Tc = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
+	       Td = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
+	       Tv = VSUB(T3, T2);
+	       T4 = VADD(T2, T3);
+	       {
+		    V Tl, T9, Tm, Te, Tj, T5;
+		    Tl = VSUB(T7, T8);
+		    T9 = VADD(T7, T8);
+		    Tm = VSUB(Td, Tc);
+		    Te = VADD(Tc, Td);
+		    Tj = VFNMS(LDK(KP500000000), T4, T1);
+		    T5 = VADD(T1, T4);
+		    {
+			 V Tn, Ta, Tk, Tf;
+			 Tn = VFNMS(LDK(KP500000000), T9, T6);
+			 Ta = VADD(T6, T9);
+			 Tk = VFNMS(LDK(KP500000000), Te, Tb);
+			 Tf = VADD(Tb, Te);
+			 {
+			      V Ty, TC, To, TB, Tx, Ts, Tg, Ti;
+			      Ty = VFNMS(LDK(KP726681596), Tl, Tn);
+			      TC = VFMA(LDK(KP968908795), Tn, Tl);
+			      To = VFNMS(LDK(KP586256827), Tn, Tm);
+			      TB = VFNMS(LDK(KP152703644), Tm, Tk);
+			      Tx = VFMA(LDK(KP203604859), Tk, Tm);
+			      Ts = VFNMS(LDK(KP439692620), Tl, Tk);
+			      Tg = VADD(Ta, Tf);
+			      Ti = VMUL(LDK(KP866025403), VSUB(Tf, Ta));
+			      {
+				   V Tz, TI, TF, TD, Tt, Th, Tq, Tp;
+				   Tp = VFNMS(LDK(KP347296355), To, Tl);
+				   Tz = VFMA(LDK(KP898197570), Ty, Tx);
+				   TI = VFNMS(LDK(KP898197570), Ty, Tx);
+				   TF = VFNMS(LDK(KP673648177), TC, TB);
+				   TD = VFMA(LDK(KP673648177), TC, TB);
+				   Tt = VFNMS(LDK(KP420276625), Ts, Tm);
+				   ST(&(xo[0]), VADD(T5, Tg), ovs, &(xo[0]));
+				   Th = VFNMS(LDK(KP500000000), Tg, T5);
+				   Tq = VFNMS(LDK(KP907603734), Tp, Tk);
+				   {
+					V TA, TJ, TE, TG, Tu, Tr, TK, TH, Tw;
+					TA = VFMA(LDK(KP852868531), Tz, Tj);
+					TJ = VFMA(LDK(KP666666666), TD, TI);
+					TE = VMUL(LDK(KP984807753), VFNMS(LDK(KP879385241), Tv, TD));
+					TG = VFNMS(LDK(KP500000000), Tz, TF);
+					Tu = VFNMS(LDK(KP826351822), Tt, Tn);
+					ST(&(xo[WS(os, 6)]), VFNMSI(Ti, Th), ovs, &(xo[0]));
+					ST(&(xo[WS(os, 3)]), VFMAI(Ti, Th), ovs, &(xo[WS(os, 1)]));
+					Tr = VFNMS(LDK(KP939692620), Tq, Tj);
+					TK = VMUL(LDK(KP866025403), VFMA(LDK(KP852868531), TJ, Tv));
+					ST(&(xo[WS(os, 8)]), VFMAI(TE, TA), ovs, &(xo[0]));
+					ST(&(xo[WS(os, 1)]), VFNMSI(TE, TA), ovs, &(xo[WS(os, 1)]));
+					TH = VFMA(LDK(KP852868531), TG, Tj);
+					Tw = VMUL(LDK(KP984807753), VFMA(LDK(KP879385241), Tv, Tu));
+					ST(&(xo[WS(os, 4)]), VFMAI(TK, TH), ovs, &(xo[0]));
+					ST(&(xo[WS(os, 5)]), VFNMSI(TK, TH), ovs, &(xo[WS(os, 1)]));
+					ST(&(xo[WS(os, 7)]), VFMAI(Tw, Tr), ovs, &(xo[WS(os, 1)]));
+					ST(&(xo[WS(os, 2)]), VFNMSI(Tw, Tr), ovs, &(xo[0]));
+				   }
+			      }
+			 }
+		    }
+	       }
+	  }
+     }
+     VLEAVE();
+}
+
+static const kdft_desc desc = { 9, XSIMD_STRING("n1fv_9"), {12, 4, 34, 0}, &GENUS, 0, 0, 0, 0 };
+
+void XSIMD(codelet_n1fv_9) (planner *p) {
+     X(kdft_register) (p, n1fv_9, &desc);
+}
+
+#else				/* HAVE_FMA */
+
+/* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name n1fv_9 -include n1f.h */
+
+/*
+ * This function contains 46 FP additions, 26 FP multiplications,
+ * (or, 30 additions, 10 multiplications, 16 fused multiply/add),
+ * 41 stack variables, 14 constants, and 18 memory accesses
+ */
+#include "n1f.h"
+
+static void n1fv_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
+{
+     DVK(KP342020143, +0.342020143325668733044099614682259580763083368);
+     DVK(KP813797681, +0.813797681349373692844693217248393223289101568);
+     DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
+     DVK(KP296198132, +0.296198132726023843175338011893050938967728390);
+     DVK(KP642787609, +0.642787609686539326322643409907263432907559884);
+     DVK(KP663413948, +0.663413948168938396205421319635891297216863310);
+     DVK(KP556670399, +0.556670399226419366452912952047023132968291906);
+     DVK(KP766044443, +0.766044443118978035202392650555416673935832457);
+     DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
+     DVK(KP150383733, +0.150383733180435296639271897612501926072238258);
+     DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
+     DVK(KP173648177, +0.173648177666930348851716626769314796000375677);
+     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
+     {
+	  INT i;
+	  const R *xi;
+	  R *xo;
+	  xi = ri;
+	  xo = ro;
+	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(18, is), MAKE_VOLATILE_STRIDE(18, os)) {
+	       V T5, Ts, Tj, To, Tf, Tn, Tp, Tu, Tl, Ta, Tk, Tm, Tt;
+	       {
+		    V T1, T2, T3, T4;
+		    T1 = LD(&(xi[0]), ivs, &(xi[0]));
+		    T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
+		    T3 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
+		    T4 = VADD(T2, T3);
+		    T5 = VADD(T1, T4);
+		    Ts = VMUL(LDK(KP866025403), VSUB(T3, T2));
+		    Tj = VFNMS(LDK(KP500000000), T4, T1);
+	       }
+	       {
+		    V Tb, Te, Tc, Td;
+		    Tb = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
+		    Tc = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
+		    Td = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
+		    Te = VADD(Tc, Td);
+		    To = VSUB(Td, Tc);
+		    Tf = VADD(Tb, Te);
+		    Tn = VFNMS(LDK(KP500000000), Te, Tb);
+		    Tp = VFMA(LDK(KP173648177), Tn, VMUL(LDK(KP852868531), To));
+		    Tu = VFNMS(LDK(KP984807753), Tn, VMUL(LDK(KP150383733), To));
+	       }
+	       {
+		    V T6, T9, T7, T8;
+		    T6 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
+		    T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
+		    T8 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
+		    T9 = VADD(T7, T8);
+		    Tl = VSUB(T8, T7);
+		    Ta = VADD(T6, T9);
+		    Tk = VFNMS(LDK(KP500000000), T9, T6);
+		    Tm = VFMA(LDK(KP766044443), Tk, VMUL(LDK(KP556670399), Tl));
+		    Tt = VFNMS(LDK(KP642787609), Tk, VMUL(LDK(KP663413948), Tl));
+	       }
+	       {
+		    V Ti, Tg, Th, Tz, TA;
+		    Ti = VBYI(VMUL(LDK(KP866025403), VSUB(Tf, Ta)));
+		    Tg = VADD(Ta, Tf);
+		    Th = VFNMS(LDK(KP500000000), Tg, T5);
+		    ST(&(xo[0]), VADD(T5, Tg), ovs, &(xo[0]));
+		    ST(&(xo[WS(os, 3)]), VADD(Th, Ti), ovs, &(xo[WS(os, 1)]));
+		    ST(&(xo[WS(os, 6)]), VSUB(Th, Ti), ovs, &(xo[0]));
+		    Tz = VFMA(LDK(KP173648177), Tk, VFNMS(LDK(KP296198132), To, VFNMS(LDK(KP939692620), Tn, VFNMS(LDK(KP852868531), Tl, Tj))));
+		    TA = VBYI(VSUB(VFNMS(LDK(KP342020143), Tn, VFNMS(LDK(KP150383733), Tl, VFNMS(LDK(KP984807753), Tk, VMUL(LDK(KP813797681), To)))), Ts));
+		    ST(&(xo[WS(os, 7)]), VSUB(Tz, TA), ovs, &(xo[WS(os, 1)]));
+		    ST(&(xo[WS(os, 2)]), VADD(Tz, TA), ovs, &(xo[0]));
+		    {
+			 V Tr, Tx, Tw, Ty, Tq, Tv;
+			 Tq = VADD(Tm, Tp);
+			 Tr = VADD(Tj, Tq);
+			 Tx = VFMA(LDK(KP866025403), VSUB(Tt, Tu), VFNMS(LDK(KP500000000), Tq, Tj));
+			 Tv = VADD(Tt, Tu);
+			 Tw = VBYI(VADD(Ts, Tv));
+			 Ty = VBYI(VADD(Ts, VFNMS(LDK(KP500000000), Tv, VMUL(LDK(KP866025403), VSUB(Tp, Tm)))));
+			 ST(&(xo[WS(os, 8)]), VSUB(Tr, Tw), ovs, &(xo[0]));
+			 ST(&(xo[WS(os, 4)]), VADD(Tx, Ty), ovs, &(xo[0]));
+			 ST(&(xo[WS(os, 1)]), VADD(Tw, Tr), ovs, &(xo[WS(os, 1)]));
+			 ST(&(xo[WS(os, 5)]), VSUB(Tx, Ty), ovs, &(xo[WS(os, 1)]));
+		    }
+	       }
+	  }
+     }
+     VLEAVE();
+}
+
+static const kdft_desc desc = { 9, XSIMD_STRING("n1fv_9"), {30, 10, 16, 0}, &GENUS, 0, 0, 0, 0 };
+
+void XSIMD(codelet_n1fv_9) (planner *p) {
+     X(kdft_register) (p, n1fv_9, &desc);
+}
+
+#endif				/* HAVE_FMA */