Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/simd/common/n1bv_7.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/simd/common/n1bv_7.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,181 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:36:58 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 7 -name n1bv_7 -include n1b.h */ + +/* + * This function contains 30 FP additions, 24 FP multiplications, + * (or, 9 additions, 3 multiplications, 21 fused multiply/add), + * 37 stack variables, 6 constants, and 14 memory accesses + */ +#include "n1b.h" + +static void n1bv_7(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) +{ + DVK(KP900968867, +0.900968867902419126236102319507445051165919162); + DVK(KP692021471, +0.692021471630095869627814897002069140197260599); + DVK(KP801937735, +0.801937735804838252472204639014890102331838324); + DVK(KP974927912, +0.974927912181823607018131682993931217232785801); + DVK(KP356895867, +0.356895867892209443894399510021300583399127187); + DVK(KP554958132, +0.554958132087371191422194871006410481067288862); + { + INT i; + const R *xi; + R *xo; + xi = ii; + xo = io; + for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(14, is), MAKE_VOLATILE_STRIDE(14, os)) { + V T1, T2, T3, T8, T9, T5, T6; + T1 = LD(&(xi[0]), ivs, &(xi[0])); + T2 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); + T3 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); + T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); + T9 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); + T5 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); + T6 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); + { + V Tg, T4, Te, Ta, Tf, T7; + Tg = VSUB(T2, T3); + T4 = VADD(T2, T3); + Te = VSUB(T8, T9); + Ta = VADD(T8, T9); + Tf = VSUB(T5, T6); + T7 = VADD(T5, T6); + { + V Tr, Tj, Tm, Th, To, Tb; + Tr = VFMA(LDK(KP554958132), Te, Tg); + Tj = VFNMS(LDK(KP356895867), T4, Ta); + Tm = VFMA(LDK(KP554958132), Tf, Te); + Th = VFNMS(LDK(KP554958132), Tg, Tf); + ST(&(xo[0]), VADD(T1, VADD(T4, VADD(T7, Ta))), ovs, &(xo[0])); + To = VFNMS(LDK(KP356895867), T7, T4); + Tb = VFNMS(LDK(KP356895867), Ta, T7); + { + V Ts, Tk, Tn, Ti; + Ts = VMUL(LDK(KP974927912), VFMA(LDK(KP801937735), Tr, Tf)); + Tk = VFNMS(LDK(KP692021471), Tj, T7); + Tn = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Tm, Tg)); + Ti = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Th, Te)); + { + V Tp, Tc, Tl, Tq, Td; + Tp = VFNMS(LDK(KP692021471), To, Ta); + Tc = VFNMS(LDK(KP692021471), Tb, T4); + Tl = VFNMS(LDK(KP900968867), Tk, T1); + Tq = VFNMS(LDK(KP900968867), Tp, T1); + Td = VFNMS(LDK(KP900968867), Tc, T1); + ST(&(xo[WS(os, 5)]), VFNMSI(Tn, Tl), ovs, &(xo[WS(os, 1)])); + ST(&(xo[WS(os, 2)]), VFMAI(Tn, Tl), ovs, &(xo[0])); + ST(&(xo[WS(os, 6)]), VFNMSI(Ts, Tq), ovs, &(xo[0])); + ST(&(xo[WS(os, 1)]), VFMAI(Ts, Tq), ovs, &(xo[WS(os, 1)])); + ST(&(xo[WS(os, 4)]), VFNMSI(Ti, Td), ovs, &(xo[0])); + ST(&(xo[WS(os, 3)]), VFMAI(Ti, Td), ovs, &(xo[WS(os, 1)])); + } + } + } + } + } + } + VLEAVE(); +} + +static const kdft_desc desc = { 7, XSIMD_STRING("n1bv_7"), {9, 3, 21, 0}, &GENUS, 0, 0, 0, 0 }; + +void XSIMD(codelet_n1bv_7) (planner *p) { + X(kdft_register) (p, n1bv_7, &desc); +} + +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 7 -name n1bv_7 -include n1b.h */ + +/* + * This function contains 30 FP additions, 18 FP multiplications, + * (or, 18 additions, 6 multiplications, 12 fused multiply/add), + * 24 stack variables, 6 constants, and 14 memory accesses + */ +#include "n1b.h" + +static void n1bv_7(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) +{ + DVK(KP222520933, +0.222520933956314404288902564496794759466355569); + DVK(KP900968867, +0.900968867902419126236102319507445051165919162); + DVK(KP623489801, +0.623489801858733530525004884004239810632274731); + DVK(KP433883739, +0.433883739117558120475768332848358754609990728); + DVK(KP781831482, +0.781831482468029808708444526674057750232334519); + DVK(KP974927912, +0.974927912181823607018131682993931217232785801); + { + INT i; + const R *xi; + R *xo; + xi = ii; + xo = io; + for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(14, is), MAKE_VOLATILE_STRIDE(14, os)) { + V Tb, T9, Tc, T3, Te, T6, Td, T7, T8, Ti, Tj; + Tb = LD(&(xi[0]), ivs, &(xi[0])); + T7 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); + T8 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); + T9 = VSUB(T7, T8); + Tc = VADD(T7, T8); + { + V T1, T2, T4, T5; + T1 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); + T2 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); + T3 = VSUB(T1, T2); + Te = VADD(T1, T2); + T4 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); + T5 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); + T6 = VSUB(T4, T5); + Td = VADD(T4, T5); + } + ST(&(xo[0]), VADD(Tb, VADD(Te, VADD(Tc, Td))), ovs, &(xo[0])); + Ti = VBYI(VFNMS(LDK(KP781831482), T6, VFNMS(LDK(KP433883739), T9, VMUL(LDK(KP974927912), T3)))); + Tj = VFMA(LDK(KP623489801), Td, VFNMS(LDK(KP900968867), Tc, VFNMS(LDK(KP222520933), Te, Tb))); + ST(&(xo[WS(os, 2)]), VADD(Ti, Tj), ovs, &(xo[0])); + ST(&(xo[WS(os, 5)]), VSUB(Tj, Ti), ovs, &(xo[WS(os, 1)])); + { + V Ta, Tf, Tg, Th; + Ta = VBYI(VFMA(LDK(KP433883739), T3, VFNMS(LDK(KP781831482), T9, VMUL(LDK(KP974927912), T6)))); + Tf = VFMA(LDK(KP623489801), Tc, VFNMS(LDK(KP222520933), Td, VFNMS(LDK(KP900968867), Te, Tb))); + ST(&(xo[WS(os, 3)]), VADD(Ta, Tf), ovs, &(xo[WS(os, 1)])); + ST(&(xo[WS(os, 4)]), VSUB(Tf, Ta), ovs, &(xo[0])); + Tg = VBYI(VFMA(LDK(KP781831482), T3, VFMA(LDK(KP974927912), T9, VMUL(LDK(KP433883739), T6)))); + Th = VFMA(LDK(KP623489801), Te, VFNMS(LDK(KP900968867), Td, VFNMS(LDK(KP222520933), Tc, Tb))); + ST(&(xo[WS(os, 1)]), VADD(Tg, Th), ovs, &(xo[WS(os, 1)])); + ST(&(xo[WS(os, 6)]), VSUB(Th, Tg), ovs, &(xo[0])); + } + } + } + VLEAVE(); +} + +static const kdft_desc desc = { 7, XSIMD_STRING("n1bv_7"), {18, 6, 12, 0}, &GENUS, 0, 0, 0, 0 }; + +void XSIMD(codelet_n1bv_7) (planner *p) { + X(kdft_register) (p, n1bv_7, &desc); +} + +#endif /* HAVE_FMA */