diff src/fftw-3.3.3/dft/simd/common/n1bv_6.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/dft/simd/common/n1bv_6.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,154 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sun Nov 25 07:36:58 EST 2012 */
+
+#include "codelet-dft.h"
+
+#ifdef HAVE_FMA
+
+/* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 6 -name n1bv_6 -include n1b.h */
+
+/*
+ * This function contains 18 FP additions, 8 FP multiplications,
+ * (or, 12 additions, 2 multiplications, 6 fused multiply/add),
+ * 23 stack variables, 2 constants, and 12 memory accesses
+ */
+#include "n1b.h"
+
+static void n1bv_6(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
+{
+     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
+     {
+	  INT i;
+	  const R *xi;
+	  R *xo;
+	  xi = ii;
+	  xo = io;
+	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(12, is), MAKE_VOLATILE_STRIDE(12, os)) {
+	       V T1, T2, T4, T5, T7, T8;
+	       T1 = LD(&(xi[0]), ivs, &(xi[0]));
+	       T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
+	       T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
+	       T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
+	       T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
+	       T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
+	       {
+		    V T3, Td, T6, Te, T9, Tf;
+		    T3 = VSUB(T1, T2);
+		    Td = VADD(T1, T2);
+		    T6 = VSUB(T4, T5);
+		    Te = VADD(T4, T5);
+		    T9 = VSUB(T7, T8);
+		    Tf = VADD(T7, T8);
+		    {
+			 V Tg, Ti, Ta, Tc, Th, Tb;
+			 Tg = VADD(Te, Tf);
+			 Ti = VMUL(LDK(KP866025403), VSUB(Te, Tf));
+			 Ta = VADD(T6, T9);
+			 Tc = VMUL(LDK(KP866025403), VSUB(T6, T9));
+			 Th = VFNMS(LDK(KP500000000), Tg, Td);
+			 ST(&(xo[0]), VADD(Td, Tg), ovs, &(xo[0]));
+			 Tb = VFNMS(LDK(KP500000000), Ta, T3);
+			 ST(&(xo[WS(os, 3)]), VADD(T3, Ta), ovs, &(xo[WS(os, 1)]));
+			 ST(&(xo[WS(os, 4)]), VFMAI(Ti, Th), ovs, &(xo[0]));
+			 ST(&(xo[WS(os, 2)]), VFNMSI(Ti, Th), ovs, &(xo[0]));
+			 ST(&(xo[WS(os, 5)]), VFNMSI(Tc, Tb), ovs, &(xo[WS(os, 1)]));
+			 ST(&(xo[WS(os, 1)]), VFMAI(Tc, Tb), ovs, &(xo[WS(os, 1)]));
+		    }
+	       }
+	  }
+     }
+     VLEAVE();
+}
+
+static const kdft_desc desc = { 6, XSIMD_STRING("n1bv_6"), {12, 2, 6, 0}, &GENUS, 0, 0, 0, 0 };
+
+void XSIMD(codelet_n1bv_6) (planner *p) {
+     X(kdft_register) (p, n1bv_6, &desc);
+}
+
+#else				/* HAVE_FMA */
+
+/* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 6 -name n1bv_6 -include n1b.h */
+
+/*
+ * This function contains 18 FP additions, 4 FP multiplications,
+ * (or, 16 additions, 2 multiplications, 2 fused multiply/add),
+ * 19 stack variables, 2 constants, and 12 memory accesses
+ */
+#include "n1b.h"
+
+static void n1bv_6(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
+{
+     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
+     {
+	  INT i;
+	  const R *xi;
+	  R *xo;
+	  xi = ii;
+	  xo = io;
+	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(12, is), MAKE_VOLATILE_STRIDE(12, os)) {
+	       V Ta, Td, T3, Te, T6, Tf, Tb, Tg, T8, T9;
+	       T8 = LD(&(xi[0]), ivs, &(xi[0]));
+	       T9 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
+	       Ta = VSUB(T8, T9);
+	       Td = VADD(T8, T9);
+	       {
+		    V T1, T2, T4, T5;
+		    T1 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
+		    T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
+		    T3 = VSUB(T1, T2);
+		    Te = VADD(T1, T2);
+		    T4 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
+		    T5 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
+		    T6 = VSUB(T4, T5);
+		    Tf = VADD(T4, T5);
+	       }
+	       Tb = VADD(T3, T6);
+	       Tg = VADD(Te, Tf);
+	       ST(&(xo[WS(os, 3)]), VADD(Ta, Tb), ovs, &(xo[WS(os, 1)]));
+	       ST(&(xo[0]), VADD(Td, Tg), ovs, &(xo[0]));
+	       {
+		    V T7, Tc, Th, Ti;
+		    T7 = VBYI(VMUL(LDK(KP866025403), VSUB(T3, T6)));
+		    Tc = VFNMS(LDK(KP500000000), Tb, Ta);
+		    ST(&(xo[WS(os, 1)]), VADD(T7, Tc), ovs, &(xo[WS(os, 1)]));
+		    ST(&(xo[WS(os, 5)]), VSUB(Tc, T7), ovs, &(xo[WS(os, 1)]));
+		    Th = VFNMS(LDK(KP500000000), Tg, Td);
+		    Ti = VBYI(VMUL(LDK(KP866025403), VSUB(Te, Tf)));
+		    ST(&(xo[WS(os, 2)]), VSUB(Th, Ti), ovs, &(xo[0]));
+		    ST(&(xo[WS(os, 4)]), VADD(Ti, Th), ovs, &(xo[0]));
+	       }
+	  }
+     }
+     VLEAVE();
+}
+
+static const kdft_desc desc = { 6, XSIMD_STRING("n1bv_6"), {16, 2, 2, 0}, &GENUS, 0, 0, 0, 0 };
+
+void XSIMD(codelet_n1bv_6) (planner *p) {
+     X(kdft_register) (p, n1bv_6, &desc);
+}
+
+#endif				/* HAVE_FMA */