diff src/fftw-3.3.3/dft/simd/common/n1bv_12.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/dft/simd/common/n1bv_12.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,250 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sun Nov 25 07:37:02 EST 2012 */
+
+#include "codelet-dft.h"
+
+#ifdef HAVE_FMA
+
+/* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n1bv_12 -include n1b.h */
+
+/*
+ * This function contains 48 FP additions, 20 FP multiplications,
+ * (or, 30 additions, 2 multiplications, 18 fused multiply/add),
+ * 49 stack variables, 2 constants, and 24 memory accesses
+ */
+#include "n1b.h"
+
+static void n1bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
+{
+     DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
+     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     {
+	  INT i;
+	  const R *xi;
+	  R *xo;
+	  xi = ii;
+	  xo = io;
+	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
+	       V T1, T6, Tc, Th, Td, Te, Ti, Tz, T4, TA, T9, Tj, Tf, Tw;
+	       {
+		    V T2, T3, T7, T8;
+		    T1 = LD(&(xi[0]), ivs, &(xi[0]));
+		    T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
+		    T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
+		    T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
+		    T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
+		    T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
+		    Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
+		    Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
+		    Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
+		    Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
+		    Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
+		    Tz = VSUB(T2, T3);
+		    T4 = VADD(T2, T3);
+		    TA = VSUB(T7, T8);
+		    T9 = VADD(T7, T8);
+		    Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
+	       }
+	       Tf = VADD(Td, Te);
+	       Tw = VSUB(Td, Te);
+	       {
+		    V T5, Tp, TJ, TB, Ta, Tq, Tk, Tx, Tg, Ts;
+		    T5 = VADD(T1, T4);
+		    Tp = VFNMS(LDK(KP500000000), T4, T1);
+		    TJ = VSUB(Tz, TA);
+		    TB = VADD(Tz, TA);
+		    Ta = VADD(T6, T9);
+		    Tq = VFNMS(LDK(KP500000000), T9, T6);
+		    Tk = VADD(Ti, Tj);
+		    Tx = VSUB(Tj, Ti);
+		    Tg = VADD(Tc, Tf);
+		    Ts = VFNMS(LDK(KP500000000), Tf, Tc);
+		    {
+			 V Tr, TF, Tb, Tn, TG, Ty, Tl, Tt;
+			 Tr = VADD(Tp, Tq);
+			 TF = VSUB(Tp, Tq);
+			 Tb = VSUB(T5, Ta);
+			 Tn = VADD(T5, Ta);
+			 TG = VADD(Tw, Tx);
+			 Ty = VSUB(Tw, Tx);
+			 Tl = VADD(Th, Tk);
+			 Tt = VFNMS(LDK(KP500000000), Tk, Th);
+			 {
+			      V TC, TE, TH, TL, Tu, TI, Tm, To;
+			      TC = VMUL(LDK(KP866025403), VSUB(Ty, TB));
+			      TE = VMUL(LDK(KP866025403), VADD(TB, Ty));
+			      TH = VFNMS(LDK(KP866025403), TG, TF);
+			      TL = VFMA(LDK(KP866025403), TG, TF);
+			      Tu = VADD(Ts, Tt);
+			      TI = VSUB(Ts, Tt);
+			      Tm = VSUB(Tg, Tl);
+			      To = VADD(Tg, Tl);
+			      {
+				   V TK, TM, Tv, TD;
+				   TK = VFMA(LDK(KP866025403), TJ, TI);
+				   TM = VFNMS(LDK(KP866025403), TJ, TI);
+				   Tv = VSUB(Tr, Tu);
+				   TD = VADD(Tr, Tu);
+				   ST(&(xo[0]), VADD(Tn, To), ovs, &(xo[0]));
+				   ST(&(xo[WS(os, 6)]), VSUB(Tn, To), ovs, &(xo[0]));
+				   ST(&(xo[WS(os, 9)]), VFMAI(Tm, Tb), ovs, &(xo[WS(os, 1)]));
+				   ST(&(xo[WS(os, 3)]), VFNMSI(Tm, Tb), ovs, &(xo[WS(os, 1)]));
+				   ST(&(xo[WS(os, 5)]), VFMAI(TM, TL), ovs, &(xo[WS(os, 1)]));
+				   ST(&(xo[WS(os, 7)]), VFNMSI(TM, TL), ovs, &(xo[WS(os, 1)]));
+				   ST(&(xo[WS(os, 11)]), VFNMSI(TK, TH), ovs, &(xo[WS(os, 1)]));
+				   ST(&(xo[WS(os, 1)]), VFMAI(TK, TH), ovs, &(xo[WS(os, 1)]));
+				   ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0]));
+				   ST(&(xo[WS(os, 4)]), VFMAI(TE, TD), ovs, &(xo[0]));
+				   ST(&(xo[WS(os, 2)]), VFMAI(TC, Tv), ovs, &(xo[0]));
+				   ST(&(xo[WS(os, 10)]), VFNMSI(TC, Tv), ovs, &(xo[0]));
+			      }
+			 }
+		    }
+	       }
+	  }
+     }
+     VLEAVE();
+}
+
+static const kdft_desc desc = { 12, XSIMD_STRING("n1bv_12"), {30, 2, 18, 0}, &GENUS, 0, 0, 0, 0 };
+
+void XSIMD(codelet_n1bv_12) (planner *p) {
+     X(kdft_register) (p, n1bv_12, &desc);
+}
+
+#else				/* HAVE_FMA */
+
+/* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n1bv_12 -include n1b.h */
+
+/*
+ * This function contains 48 FP additions, 8 FP multiplications,
+ * (or, 44 additions, 4 multiplications, 4 fused multiply/add),
+ * 27 stack variables, 2 constants, and 24 memory accesses
+ */
+#include "n1b.h"
+
+static void n1bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
+{
+     DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
+     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     {
+	  INT i;
+	  const R *xi;
+	  R *xo;
+	  xi = ii;
+	  xo = io;
+	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
+	       V T5, Ta, TG, TF, Ty, Tm, Ti, Tp, TJ, TI, Tx, Ts;
+	       {
+		    V T1, T6, T4, Tk, T9, Tl;
+		    T1 = LD(&(xi[0]), ivs, &(xi[0]));
+		    T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
+		    {
+			 V T2, T3, T7, T8;
+			 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
+			 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
+			 T4 = VADD(T2, T3);
+			 Tk = VSUB(T2, T3);
+			 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
+			 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
+			 T9 = VADD(T7, T8);
+			 Tl = VSUB(T7, T8);
+		    }
+		    T5 = VFNMS(LDK(KP500000000), T4, T1);
+		    Ta = VFNMS(LDK(KP500000000), T9, T6);
+		    TG = VADD(T6, T9);
+		    TF = VADD(T1, T4);
+		    Ty = VADD(Tk, Tl);
+		    Tm = VMUL(LDK(KP866025403), VSUB(Tk, Tl));
+	       }
+	       {
+		    V Tn, Tq, Te, To, Th, Tr;
+		    Tn = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
+		    Tq = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
+		    {
+			 V Tc, Td, Tf, Tg;
+			 Tc = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
+			 Td = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
+			 Te = VSUB(Tc, Td);
+			 To = VADD(Tc, Td);
+			 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
+			 Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
+			 Th = VSUB(Tf, Tg);
+			 Tr = VADD(Tf, Tg);
+		    }
+		    Ti = VMUL(LDK(KP866025403), VSUB(Te, Th));
+		    Tp = VFNMS(LDK(KP500000000), To, Tn);
+		    TJ = VADD(Tq, Tr);
+		    TI = VADD(Tn, To);
+		    Tx = VADD(Te, Th);
+		    Ts = VFNMS(LDK(KP500000000), Tr, Tq);
+	       }
+	       {
+		    V TH, TK, TL, TM;
+		    TH = VSUB(TF, TG);
+		    TK = VBYI(VSUB(TI, TJ));
+		    ST(&(xo[WS(os, 3)]), VSUB(TH, TK), ovs, &(xo[WS(os, 1)]));
+		    ST(&(xo[WS(os, 9)]), VADD(TH, TK), ovs, &(xo[WS(os, 1)]));
+		    TL = VADD(TF, TG);
+		    TM = VADD(TI, TJ);
+		    ST(&(xo[WS(os, 6)]), VSUB(TL, TM), ovs, &(xo[0]));
+		    ST(&(xo[0]), VADD(TL, TM), ovs, &(xo[0]));
+	       }
+	       {
+		    V Tj, Tv, Tu, Tw, Tb, Tt;
+		    Tb = VSUB(T5, Ta);
+		    Tj = VSUB(Tb, Ti);
+		    Tv = VADD(Tb, Ti);
+		    Tt = VSUB(Tp, Ts);
+		    Tu = VBYI(VADD(Tm, Tt));
+		    Tw = VBYI(VSUB(Tt, Tm));
+		    ST(&(xo[WS(os, 11)]), VSUB(Tj, Tu), ovs, &(xo[WS(os, 1)]));
+		    ST(&(xo[WS(os, 5)]), VADD(Tv, Tw), ovs, &(xo[WS(os, 1)]));
+		    ST(&(xo[WS(os, 1)]), VADD(Tj, Tu), ovs, &(xo[WS(os, 1)]));
+		    ST(&(xo[WS(os, 7)]), VSUB(Tv, Tw), ovs, &(xo[WS(os, 1)]));
+	       }
+	       {
+		    V Tz, TD, TC, TE, TA, TB;
+		    Tz = VBYI(VMUL(LDK(KP866025403), VSUB(Tx, Ty)));
+		    TD = VBYI(VMUL(LDK(KP866025403), VADD(Ty, Tx)));
+		    TA = VADD(T5, Ta);
+		    TB = VADD(Tp, Ts);
+		    TC = VSUB(TA, TB);
+		    TE = VADD(TA, TB);
+		    ST(&(xo[WS(os, 2)]), VADD(Tz, TC), ovs, &(xo[0]));
+		    ST(&(xo[WS(os, 8)]), VSUB(TE, TD), ovs, &(xo[0]));
+		    ST(&(xo[WS(os, 10)]), VSUB(TC, Tz), ovs, &(xo[0]));
+		    ST(&(xo[WS(os, 4)]), VADD(TD, TE), ovs, &(xo[0]));
+	       }
+	  }
+     }
+     VLEAVE();
+}
+
+static const kdft_desc desc = { 12, XSIMD_STRING("n1bv_12"), {44, 4, 4, 0}, &GENUS, 0, 0, 0, 0 };
+
+void XSIMD(codelet_n1bv_12) (planner *p) {
+     X(kdft_register) (p, n1bv_12, &desc);
+}
+
+#endif				/* HAVE_FMA */