Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/scalar/codelets/t2_64.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/scalar/codelets/t2_64.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,4096 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:36:01 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 64 -name t2_64 -include t.h */ + +/* + * This function contains 1154 FP additions, 840 FP multiplications, + * (or, 520 additions, 206 multiplications, 634 fused multiply/add), + * 349 stack variables, 15 constants, and 256 memory accesses + */ +#include "t.h" + +static void t2_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP995184726, +0.995184726672196886244836953109479921575474869); + DK(KP773010453, +0.773010453362736960810906609758469800971041293); + DK(KP956940335, +0.956940335732208864935797886980269969482849206); + DK(KP881921264, +0.881921264348355029712756863660388349508442621); + DK(KP820678790, +0.820678790828660330972281985331011598767386482); + DK(KP098491403, +0.098491403357164253077197521291327432293052451); + DK(KP534511135, +0.534511135950791641089685961295362908582039528); + DK(KP303346683, +0.303346683607342391675883946941299872384187453); + DK(KP831469612, +0.831469612302545237078788377617905756738560812); + DK(KP980785280, +0.980785280403230449126182236134239036973933731); + DK(KP668178637, +0.668178637919298919997757686523080761552472251); + DK(KP198912367, +0.198912367379658006911597622644676228597850501); + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + DK(KP414213562, +0.414213562373095048801688724209698078569671875); + { + INT m; + for (m = mb, W = W + (mb * 10); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 10, MAKE_VOLATILE_STRIDE(128, rs)) { + E Tg0, TlC, TlB, Tg3; + { + E T2, T3, Tc, T8, Te, T5, T6, T14, T3d, T3i, TJ, T7, Tr, T3g, TG; + E T10, T3a, TL, TP, Tb, Tt, T17, Td, Ti, T3N, T3R, T1i, Tu, T1I, T2U; + E T1t, T3U, T5O, T48, T2u, T7B, TK, T79, T3D, T2h, T2l, T3G, T1x, T3X, T2d; + E T1M, T2X, T4B, T4x, T3j, T4T, T29, T5s, T81, T5w, T7X, T7N, T7h, T64, T6a; + E T6e, T7l, T60, T7R, T6h, T5A, T7o, T6J, T6k, T5E, T6N, T7r, T6x, T6t, T7c; + E TO, T2x, T7E, TU, TQ, T2C, T2y, T5R, T4b, T4c, T4g, T4W, T3m, T3r, T3n; + E T1k, Tx, Ty, T4p, T4s, TC, T23, T1Z, T19, Th, T31, T35, T1e, T44, T41; + E T1a, T6W, T70, T55, T59, T3v, T3z, Tf, T1R, T2N, T2Q, T1V, T1p, T1l, Tm; + { + E T1H, T1s, T2g, Tg, Tw, TH, T2t, T47, T3h, T3M, T4w, T28, T3Q, T4A, T2c; + E Ts; + { + E T4, T13, TI, TF, TZ, Ta, T9; + T2 = W[0]; + T3 = W[2]; + Tc = W[5]; + T8 = W[4]; + Te = W[6]; + T4 = T2 * T3; + T13 = T2 * Tc; + TI = T3 * Tc; + TF = T3 * T8; + T1H = T8 * Te; + TZ = T2 * T8; + T5 = W[1]; + T6 = W[3]; + T1s = T3 * Te; + T2g = T2 * Te; + T14 = FNMS(T5, T8, T13); + T3d = FMA(T5, T8, T13); + T3i = FNMS(T6, T8, TI); + TJ = FMA(T6, T8, TI); + T7 = FNMS(T5, T6, T4); + Tr = FMA(T5, T6, T4); + Ta = T2 * T6; + Tg = T7 * Tc; + Tw = Tr * Tc; + T3g = FMA(T6, Tc, TF); + TG = FNMS(T6, Tc, TF); + T10 = FMA(T5, Tc, TZ); + T3a = FNMS(T5, Tc, TZ); + TH = TG * Te; + T2t = T10 * Te; + T47 = T3a * Te; + T3h = T3g * Te; + TL = W[8]; + TP = W[9]; + T9 = T7 * T8; + Tb = FMA(T5, T3, Ta); + Tt = FNMS(T5, T3, Ta); + T3M = T2 * TL; + T4w = T8 * TL; + T28 = T3 * TL; + T3Q = T2 * TP; + T4A = T8 * TP; + T2c = T3 * TP; + T17 = FNMS(Tb, Tc, T9); + Td = FMA(Tb, Tc, T9); + Ts = Tr * T8; + Ti = W[7]; + } + { + E T5r, T80, T1L, T2k, T1w, T5z, T2B, T2v; + T3N = FMA(T5, TP, T3M); + T3R = FNMS(T5, TL, T3Q); + T1i = FMA(Tt, Tc, Ts); + Tu = FNMS(Tt, Tc, Ts); + T1I = FNMS(Tc, Ti, T1H); + T2U = FMA(Tc, Ti, T1H); + T1t = FMA(T6, Ti, T1s); + T3U = FNMS(T6, Ti, T1s); + T5O = FNMS(T3d, Ti, T47); + T48 = FMA(T3d, Ti, T47); + T2u = FMA(T14, Ti, T2t); + T7B = FNMS(T14, Ti, T2t); + T1L = T8 * Ti; + T2k = T2 * Ti; + T1w = T3 * Ti; + TK = FMA(TJ, Ti, TH); + T79 = FNMS(TJ, Ti, TH); + T3D = FMA(T5, Ti, T2g); + T2h = FNMS(T5, Ti, T2g); + T2l = FMA(T5, Te, T2k); + T3G = FNMS(T5, Te, T2k); + T1x = FNMS(T6, Te, T1w); + T3X = FMA(T6, Te, T1w); + T2d = FNMS(T6, TL, T2c); + T1M = FMA(Tc, Te, T1L); + T2X = FNMS(Tc, Te, T1L); + T4B = FNMS(Tc, TL, T4A); + T4x = FMA(Tc, TP, T4w); + T3j = FMA(T3i, Ti, T3h); + T4T = FNMS(T3i, Ti, T3h); + T29 = FMA(T6, TP, T28); + T5r = T3g * TL; + T80 = T7 * TP; + { + E T7M, T7g, T63, T5v, T7W; + T5v = T3g * TP; + T7W = T7 * TL; + T5s = FMA(T3i, TP, T5r); + T81 = FNMS(Tb, TL, T80); + T5w = FNMS(T3i, TL, T5v); + T7X = FMA(Tb, TP, T7W); + T7M = TG * TL; + T7g = T10 * TL; + T63 = T3a * TP; + { + E T6d, T7k, T69, T5Z, T7Q; + T69 = Tr * TL; + T7N = FMA(TJ, TP, T7M); + T7h = FMA(T14, TP, T7g); + T64 = FNMS(T3d, TL, T63); + T6a = FMA(Tt, TP, T69); + T6d = Tr * TP; + T7k = T10 * TP; + T5Z = T3a * TL; + T7Q = TG * TP; + T6e = FNMS(Tt, TL, T6d); + T7l = FNMS(T14, TL, T7k); + T60 = FMA(T3d, TP, T5Z); + T7R = FNMS(TJ, TL, T7Q); + T5z = Tr * Te; + } + } + { + E T6I, T5D, T6M, T6s, T6w; + T6I = T7 * Te; + T5D = Tr * Ti; + T6M = T7 * Ti; + T6h = FNMS(Tt, Ti, T5z); + T5A = FMA(Tt, Ti, T5z); + T7o = FMA(Tb, Ti, T6I); + T6J = FNMS(Tb, Ti, T6I); + T6k = FMA(Tt, Te, T5D); + T5E = FNMS(Tt, Te, T5D); + T6N = FMA(Tb, Te, T6M); + T7r = FNMS(Tb, Te, T6M); + T6s = T2U * TL; + T6w = T2U * TP; + { + E TN, TT, TM, T2w; + TN = TG * Ti; + T2w = T10 * Ti; + T6x = FNMS(T2X, TL, T6w); + T6t = FMA(T2X, TP, T6s); + T7c = FMA(TJ, Te, TN); + TO = FNMS(TJ, Te, TN); + TT = TK * TP; + TM = TK * TL; + T2x = FNMS(T14, Te, T2w); + T7E = FMA(T14, Te, T2w); + TU = FNMS(TO, TL, TT); + TQ = FMA(TO, TP, TM); + T2B = T2u * TP; + T2v = T2u * TL; + } + } + { + E T1Y, T22, Tv, TB; + { + E T49, T4f, T4a, T3l, T3q, T3k; + T4a = T3a * Ti; + T2C = FNMS(T2x, TL, T2B); + T2y = FMA(T2x, TP, T2v); + T5R = FMA(T3d, Te, T4a); + T4b = FNMS(T3d, Te, T4a); + T49 = T48 * TL; + T4f = T48 * TP; + T3l = T3g * Ti; + T4c = FMA(T4b, TP, T49); + T4g = FNMS(T4b, TL, T4f); + T4W = FMA(T3i, Te, T3l); + T3m = FNMS(T3i, Te, T3l); + T1Y = Tu * TL; + T3q = T3j * TP; + T3k = T3j * TL; + T22 = Tu * TP; + Tv = Tu * Te; + T3r = FNMS(T3m, TL, T3q); + T3n = FMA(T3m, TP, T3k); + TB = Tu * Ti; + T1k = FNMS(Tt, T8, Tw); + Tx = FMA(Tt, T8, Tw); + } + { + E T30, T34, T18, T1d; + T30 = T17 * TL; + T34 = T17 * TP; + T18 = T17 * Te; + Ty = FMA(Tx, Ti, Tv); + T4p = FNMS(Tx, Ti, Tv); + T4s = FMA(Tx, Te, TB); + TC = FNMS(Tx, Te, TB); + T23 = FNMS(Tx, TL, T22); + T1Z = FMA(Tx, TP, T1Y); + T1d = T17 * Ti; + T19 = FMA(Tb, T8, Tg); + Th = FNMS(Tb, T8, Tg); + { + E T1j, T1o, T1Q, T1U; + T1j = T1i * TL; + { + E T6V, T6Z, T54, T58; + T6V = Ty * TL; + T6Z = Ty * TP; + T31 = FMA(T19, TP, T30); + T35 = FNMS(T19, TL, T34); + T1e = FMA(T19, Te, T1d); + T44 = FNMS(T19, Te, T1d); + T41 = FMA(T19, Ti, T18); + T1a = FNMS(T19, Ti, T18); + T6W = FMA(TC, TP, T6V); + T70 = FNMS(TC, TL, T6Z); + T1o = T1i * TP; + T54 = T41 * TL; + T58 = T41 * TP; + T1Q = T1i * Te; + T1U = T1i * Ti; + T55 = FMA(T44, TP, T54); + T59 = FNMS(T44, TL, T58); + } + T3v = Td * TL; + T3z = Td * TP; + Tf = Td * Te; + T1R = FMA(T1k, Ti, T1Q); + T2N = FNMS(T1k, Ti, T1Q); + T2Q = FMA(T1k, Te, T1U); + T1V = FNMS(T1k, Te, T1U); + T1p = FNMS(T1k, TL, T1o); + T1l = FMA(T1k, TP, T1j); + Tm = Td * Ti; + } + } + } + } + } + { + E Tl9, TlD, TY, Tg4, T8w, TdS, TkE, Tkd, T2G, Tge, Tgh, TiK, Te1, T98, Te0; + E T9f, Te5, T9p, Tgq, T39, Te8, T9M, TiN, Tgn, TeE, TbI, Thr, T74, TeP, TcB; + E Tja, Thc, T8D, TdT, T1B, TkD, T8K, TdU, Tg7, Tk7, T8T, TdY, T27, Tg9, T90; + E TdX, Tgc, TiJ, T9Y, Tec, T4k, TgB, Tal, Tef, Tgy, TiT, Taz, Tel, T5d, Th0; + E Tbs, Tew, TgL, TiZ, T3K, Tgo, Tgt, TiO, T9P, Te6, T9E, Te9, T4L, Tgz, TgE; + E TiU, Tao, Ted, Tad, Teg, T5I, TgM, Th3, Tj0, Tbv, Tem, TaO, Tex, T7v, Thd; + E Thu, Tjb, TcE, TeF, TbX, TeQ, T68, Tj5, Tez, Teq, Tbj, Tbx, TgS, Th5, T6B; + E Tj6, TeA, Tet, Tb4, Tby, TgX, Th6, T7V, Tjg, TeS, TeJ, Tcs, TcG, Thj, Thw; + E T84, T83, T85, Tc7, T8k, Tc3, T86, T89, T8b; + { + E T3w, T3A, T4H, T4E, T8e, T8i, T5j, T5n, T4U, T4S, T4V, Tau, T5b, Tbq, T4X; + E T50, T52; + { + E T72, Tcz, Tcv, T6Q, Tha, TbG, T6U, Tcx, T99, T9e; + { + E T1, Tkb, Tp, Tka, TR, TV, TE, T8s, TS, T8t; + { + E Tn, Tj, T8d, T8h, T5i, T5m; + T1 = ri[0]; + T8d = T1R * TL; + T8h = T1R * TP; + T3w = FMA(Th, TP, T3v); + T3A = FNMS(Th, TL, T3z); + Tn = FMA(Th, Te, Tm); + T4H = FNMS(Th, Te, Tm); + T4E = FMA(Th, Ti, Tf); + Tj = FNMS(Th, Ti, Tf); + T8e = FMA(T1V, TP, T8d); + T8i = FNMS(T1V, TL, T8h); + Tkb = ii[0]; + T5i = T4E * TL; + T5m = T4E * TP; + { + E Tk, To, Tl, Tk9; + Tk = ri[WS(rs, 32)]; + To = ii[WS(rs, 32)]; + T5j = FMA(T4H, TP, T5i); + T5n = FNMS(T4H, TL, T5m); + Tl = Tj * Tk; + Tk9 = Tj * To; + { + E Tz, TD, TA, T8r; + Tz = ri[WS(rs, 16)]; + TD = ii[WS(rs, 16)]; + Tp = FMA(Tn, To, Tl); + Tka = FNMS(Tn, Tk, Tk9); + TA = Ty * Tz; + T8r = Ty * TD; + TR = ri[WS(rs, 48)]; + TV = ii[WS(rs, 48)]; + TE = FMA(TC, TD, TA); + T8s = FNMS(TC, Tz, T8r); + TS = TQ * TR; + T8t = TQ * TV; + } + } + } + { + E T8q, Tq, Tl7, Tkc, TW, T8u; + T8q = T1 - Tp; + Tq = T1 + Tp; + Tl7 = Tkb - Tka; + Tkc = Tka + Tkb; + TW = FMA(TU, TV, TS); + T8u = FNMS(TU, TR, T8t); + { + E TX, Tl8, T8v, Tk8; + TX = TE + TW; + Tl8 = TE - TW; + T8v = T8s - T8u; + Tk8 = T8s + T8u; + Tl9 = Tl7 - Tl8; + TlD = Tl8 + Tl7; + TY = Tq + TX; + Tg4 = Tq - TX; + T8w = T8q - T8v; + TdS = T8q + T8v; + TkE = Tkc - Tk8; + Tkd = Tk8 + Tkc; + } + } + } + { + E T2f, T93, T2E, T9d, T2n, T95, T2s, T9b; + { + E T2a, T2e, T2i, T2m; + T2a = ri[WS(rs, 60)]; + T2e = ii[WS(rs, 60)]; + { + E T2z, T2D, T2b, T92, T2A, T9c; + T2z = ri[WS(rs, 44)]; + T2D = ii[WS(rs, 44)]; + T2b = T29 * T2a; + T92 = T29 * T2e; + T2A = T2y * T2z; + T9c = T2y * T2D; + T2f = FMA(T2d, T2e, T2b); + T93 = FNMS(T2d, T2a, T92); + T2E = FMA(T2C, T2D, T2A); + T9d = FNMS(T2C, T2z, T9c); + } + T2i = ri[WS(rs, 28)]; + T2m = ii[WS(rs, 28)]; + { + E T2p, T2r, T2j, T94, T2q, T9a; + T2p = ri[WS(rs, 12)]; + T2r = ii[WS(rs, 12)]; + T2j = T2h * T2i; + T94 = T2h * T2m; + T2q = TG * T2p; + T9a = TG * T2r; + T2n = FMA(T2l, T2m, T2j); + T95 = FNMS(T2l, T2i, T94); + T2s = FMA(TJ, T2r, T2q); + T9b = FNMS(TJ, T2p, T9a); + } + } + { + E T2o, Tgf, T96, T97, T2F, Tgg; + T99 = T2f - T2n; + T2o = T2f + T2n; + Tgf = T93 + T95; + T96 = T93 - T95; + T97 = T2s - T2E; + T2F = T2s + T2E; + Tgg = T9b + T9d; + T9e = T9b - T9d; + T2G = T2o + T2F; + Tge = T2o - T2F; + Tgh = Tgf - Tgg; + TiK = Tgf + Tgg; + Te1 = T96 - T97; + T98 = T96 + T97; + } + } + { + E T9K, T2T, T9G, T9n, Tgl, T9o, T38, T9I; + { + E T2M, T9k, T37, T2V, T2S, T2W, T2Y, T9m, T32, T33, T36, T2Z, T9H; + { + E T2J, T2L, T2K, T9j; + T2J = ri[WS(rs, 2)]; + T2L = ii[WS(rs, 2)]; + T32 = ri[WS(rs, 50)]; + Te0 = T99 + T9e; + T9f = T99 - T9e; + T2K = Tr * T2J; + T9j = Tr * T2L; + T33 = T31 * T32; + T36 = ii[WS(rs, 50)]; + T2M = FMA(Tt, T2L, T2K); + T9k = FNMS(Tt, T2J, T9j); + } + { + E T2O, T9J, T2R, T2P, T9l; + T2O = ri[WS(rs, 34)]; + T37 = FMA(T35, T36, T33); + T9J = T31 * T36; + T2R = ii[WS(rs, 34)]; + T2P = T2N * T2O; + T2V = ri[WS(rs, 18)]; + T9K = FNMS(T35, T32, T9J); + T9l = T2N * T2R; + T2S = FMA(T2Q, T2R, T2P); + T2W = T2U * T2V; + T2Y = ii[WS(rs, 18)]; + T9m = FNMS(T2Q, T2O, T9l); + } + T2T = T2M + T2S; + T9G = T2M - T2S; + T2Z = FMA(T2X, T2Y, T2W); + T9H = T2U * T2Y; + T9n = T9k - T9m; + Tgl = T9k + T9m; + T9o = T2Z - T37; + T38 = T2Z + T37; + T9I = FNMS(T2X, T2V, T9H); + } + { + E T6H, TbD, T6P, T6R, T6T, TbF, T6S, Tcw; + { + E T6X, T71, T6E, TbC, T6K, TbE; + { + E T6F, T6G, T9L, Tgm; + T6E = ri[WS(rs, 63)]; + Te5 = T9n - T9o; + T9p = T9n + T9o; + Tgq = T2T - T38; + T39 = T2T + T38; + T9L = T9I - T9K; + Tgm = T9I + T9K; + T6F = TL * T6E; + T6G = ii[WS(rs, 63)]; + Te8 = T9G + T9L; + T9M = T9G - T9L; + TiN = Tgl + Tgm; + Tgn = Tgl - Tgm; + TbC = TL * T6G; + T6H = FMA(TP, T6G, T6F); + } + T6X = ri[WS(rs, 47)]; + T71 = ii[WS(rs, 47)]; + TbD = FNMS(TP, T6E, TbC); + { + E T6O, T6L, T6Y, Tcy; + T6K = ri[WS(rs, 31)]; + T6Y = T6W * T6X; + Tcy = T6W * T71; + T6O = ii[WS(rs, 31)]; + T6L = T6J * T6K; + T72 = FMA(T70, T71, T6Y); + Tcz = FNMS(T70, T6X, Tcy); + TbE = T6J * T6O; + T6P = FMA(T6N, T6O, T6L); + } + T6R = ri[WS(rs, 15)]; + T6T = ii[WS(rs, 15)]; + TbF = FNMS(T6N, T6K, TbE); + } + Tcv = T6H - T6P; + T6Q = T6H + T6P; + T6S = TK * T6R; + Tcw = TK * T6T; + Tha = TbD + TbF; + TbG = TbD - TbF; + T6U = FMA(TO, T6T, T6S); + Tcx = FNMS(TO, T6R, Tcw); + } + } + { + E T1J, T1G, T1K, T8O, T25, T8Y, T1N, T1S, T1W; + { + E T1b, T16, T1c, T8y, T1z, T8I, T1f, T1m, T1q; + { + E T11, T12, T15, T1u, T1y, T8x, T1v, T8H; + T11 = ri[WS(rs, 8)]; + { + E TbH, T73, TcA, Thb; + TbH = T6U - T72; + T73 = T6U + T72; + TcA = Tcx - Tcz; + Thb = Tcx + Tcz; + TeE = TbG - TbH; + TbI = TbG + TbH; + Thr = T6Q - T73; + T74 = T6Q + T73; + TeP = Tcv + TcA; + TcB = Tcv - TcA; + Tja = Tha + Thb; + Thc = Tha - Thb; + T12 = T10 * T11; + } + T15 = ii[WS(rs, 8)]; + T1u = ri[WS(rs, 24)]; + T1y = ii[WS(rs, 24)]; + T1b = ri[WS(rs, 40)]; + T16 = FMA(T14, T15, T12); + T8x = T10 * T15; + T1v = T1t * T1u; + T8H = T1t * T1y; + T1c = T1a * T1b; + T8y = FNMS(T14, T11, T8x); + T1z = FMA(T1x, T1y, T1v); + T8I = FNMS(T1x, T1u, T8H); + T1f = ii[WS(rs, 40)]; + T1m = ri[WS(rs, 56)]; + T1q = ii[WS(rs, 56)]; + } + { + E T1D, T1E, T1F, T20, T24, T8N, T21, T8X; + { + E T1h, T8C, T8A, T1r, T8G, Tg5, T8B; + T1D = ri[WS(rs, 4)]; + { + E T1g, T8z, T1n, T8F; + T1g = FMA(T1e, T1f, T1c); + T8z = T1a * T1f; + T1n = T1l * T1m; + T8F = T1l * T1q; + T1h = T16 + T1g; + T8C = T16 - T1g; + T8A = FNMS(T1e, T1b, T8z); + T1r = FMA(T1p, T1q, T1n); + T8G = FNMS(T1p, T1m, T8F); + T1E = T7 * T1D; + } + Tg5 = T8y + T8A; + T8B = T8y - T8A; + { + E T1A, T8E, Tg6, T8J; + T1A = T1r + T1z; + T8E = T1r - T1z; + Tg6 = T8G + T8I; + T8J = T8G - T8I; + T8D = T8B - T8C; + TdT = T8C + T8B; + T1B = T1h + T1A; + TkD = T1A - T1h; + T8K = T8E + T8J; + TdU = T8E - T8J; + Tg7 = Tg5 - Tg6; + Tk7 = Tg5 + Tg6; + T1F = ii[WS(rs, 4)]; + } + } + T20 = ri[WS(rs, 52)]; + T24 = ii[WS(rs, 52)]; + T1J = ri[WS(rs, 36)]; + T1G = FMA(Tb, T1F, T1E); + T8N = T7 * T1F; + T21 = T1Z * T20; + T8X = T1Z * T24; + T1K = T1I * T1J; + T8O = FNMS(Tb, T1D, T8N); + T25 = FMA(T23, T24, T21); + T8Y = FNMS(T23, T20, T8X); + T1N = ii[WS(rs, 36)]; + T1S = ri[WS(rs, 20)]; + T1W = ii[WS(rs, 20)]; + } + } + { + E T3V, T3T, T3W, T9T, T4i, Taj, T3Y, T42, T45; + { + E T3O, T3P, T3S, T4d, T4h, T9S, T4e, Tai; + { + E T1P, T8U, T8Q, T1X, T8W, Tga, T8R; + T3O = ri[WS(rs, 62)]; + { + E T1O, T8P, T1T, T8V; + T1O = FMA(T1M, T1N, T1K); + T8P = T1I * T1N; + T1T = T1R * T1S; + T8V = T1R * T1W; + T1P = T1G + T1O; + T8U = T1G - T1O; + T8Q = FNMS(T1M, T1J, T8P); + T1X = FMA(T1V, T1W, T1T); + T8W = FNMS(T1V, T1S, T8V); + T3P = T3N * T3O; + } + Tga = T8O + T8Q; + T8R = T8O - T8Q; + { + E T26, T8S, Tgb, T8Z; + T26 = T1X + T25; + T8S = T1X - T25; + Tgb = T8W + T8Y; + T8Z = T8W - T8Y; + T8T = T8R + T8S; + TdY = T8R - T8S; + T27 = T1P + T26; + Tg9 = T1P - T26; + T90 = T8U - T8Z; + TdX = T8U + T8Z; + Tgc = Tga - Tgb; + TiJ = Tga + Tgb; + T3S = ii[WS(rs, 62)]; + } + } + T4d = ri[WS(rs, 46)]; + T4h = ii[WS(rs, 46)]; + T3V = ri[WS(rs, 30)]; + T3T = FMA(T3R, T3S, T3P); + T9S = T3N * T3S; + T4e = T4c * T4d; + Tai = T4c * T4h; + T3W = T3U * T3V; + T9T = FNMS(T3R, T3O, T9S); + T4i = FMA(T4g, T4h, T4e); + Taj = FNMS(T4g, T4d, Tai); + T3Y = ii[WS(rs, 30)]; + T42 = ri[WS(rs, 14)]; + T45 = ii[WS(rs, 14)]; + } + { + E T4P, T4Q, T4R, T56, T5a, Tat, T57, Tbp; + { + E T40, Taf, T9V, T46, Tah, Tgw, T9W; + T4P = ri[WS(rs, 1)]; + { + E T3Z, T9U, T43, Tag; + T3Z = FMA(T3X, T3Y, T3W); + T9U = T3U * T3Y; + T43 = T41 * T42; + Tag = T41 * T45; + T40 = T3T + T3Z; + Taf = T3T - T3Z; + T9V = FNMS(T3X, T3V, T9U); + T46 = FMA(T44, T45, T43); + Tah = FNMS(T44, T42, Tag); + T4Q = T2 * T4P; + } + Tgw = T9T + T9V; + T9W = T9T - T9V; + { + E T4j, T9X, Tgx, Tak; + T4j = T46 + T4i; + T9X = T46 - T4i; + Tgx = Tah + Taj; + Tak = Tah - Taj; + T9Y = T9W + T9X; + Tec = T9W - T9X; + T4k = T40 + T4j; + TgB = T40 - T4j; + Tal = Taf - Tak; + Tef = Taf + Tak; + Tgy = Tgw - Tgx; + TiT = Tgw + Tgx; + T4R = ii[WS(rs, 1)]; + } + } + T56 = ri[WS(rs, 49)]; + T5a = ii[WS(rs, 49)]; + T4U = ri[WS(rs, 33)]; + T4S = FMA(T5, T4R, T4Q); + Tat = T2 * T4R; + T57 = T55 * T56; + Tbp = T55 * T5a; + T4V = T4T * T4U; + Tau = FNMS(T5, T4P, Tat); + T5b = FMA(T59, T5a, T57); + Tbq = FNMS(T59, T56, Tbp); + T4X = ii[WS(rs, 33)]; + T50 = ri[WS(rs, 17)]; + T52 = ii[WS(rs, 17)]; + } + } + } + } + { + E T7a, T78, T7b, TbL, T7t, TbU, T7d, T7i, T7m; + { + E T4q, T4o, T4r, Ta1, T4J, Taa, T4t, T4y, T4C; + { + E T3o, T3f, T3p, T9s, T3I, T9B, T3s, T3x, T3B; + { + E T3b, T3c, T3e, T3E, T3H, T9r, T3F, T9A; + { + E T4Z, Tbm, Taw, T53, Tbo, TgJ, Tax; + T3b = ri[WS(rs, 10)]; + { + E T4Y, Tav, T51, Tbn; + T4Y = FMA(T4W, T4X, T4V); + Tav = T4T * T4X; + T51 = T48 * T50; + Tbn = T48 * T52; + T4Z = T4S + T4Y; + Tbm = T4S - T4Y; + Taw = FNMS(T4W, T4U, Tav); + T53 = FMA(T4b, T52, T51); + Tbo = FNMS(T4b, T50, Tbn); + T3c = T3a * T3b; + } + TgJ = Tau + Taw; + Tax = Tau - Taw; + { + E T5c, Tay, TgK, Tbr; + T5c = T53 + T5b; + Tay = T53 - T5b; + TgK = Tbo + Tbq; + Tbr = Tbo - Tbq; + Taz = Tax + Tay; + Tel = Tax - Tay; + T5d = T4Z + T5c; + Th0 = T4Z - T5c; + Tbs = Tbm - Tbr; + Tew = Tbm + Tbr; + TgL = TgJ - TgK; + TiZ = TgJ + TgK; + T3e = ii[WS(rs, 10)]; + } + } + T3E = ri[WS(rs, 26)]; + T3H = ii[WS(rs, 26)]; + T3o = ri[WS(rs, 42)]; + T3f = FMA(T3d, T3e, T3c); + T9r = T3a * T3e; + T3F = T3D * T3E; + T9A = T3D * T3H; + T3p = T3n * T3o; + T9s = FNMS(T3d, T3b, T9r); + T3I = FMA(T3G, T3H, T3F); + T9B = FNMS(T3G, T3E, T9A); + T3s = ii[WS(rs, 42)]; + T3x = ri[WS(rs, 58)]; + T3B = ii[WS(rs, 58)]; + } + { + E T4l, T4m, T4n, T4F, T4I, Ta0, T4G, Ta9; + { + E T3u, T9q, T9u, T3C, T9z, Tgr, T9v; + T4l = ri[WS(rs, 6)]; + { + E T3t, T9t, T3y, T9y; + T3t = FMA(T3r, T3s, T3p); + T9t = T3n * T3s; + T3y = T3w * T3x; + T9y = T3w * T3B; + T3u = T3f + T3t; + T9q = T3f - T3t; + T9u = FNMS(T3r, T3o, T9t); + T3C = FMA(T3A, T3B, T3y); + T9z = FNMS(T3A, T3x, T9y); + T4m = T3g * T4l; + } + Tgr = T9s + T9u; + T9v = T9s - T9u; + { + E T3J, T9x, Tgs, T9C; + T3J = T3C + T3I; + T9x = T3C - T3I; + Tgs = T9z + T9B; + T9C = T9z - T9B; + { + E T9w, T9O, T9D, T9N; + T9w = T9q + T9v; + T9O = T9v - T9q; + T3K = T3u + T3J; + Tgo = T3J - T3u; + T9D = T9x - T9C; + T9N = T9x + T9C; + Tgt = Tgr - Tgs; + TiO = Tgr + Tgs; + T9P = T9N - T9O; + Te6 = T9O + T9N; + T9E = T9w - T9D; + Te9 = T9w + T9D; + T4n = ii[WS(rs, 6)]; + } + } + } + T4F = ri[WS(rs, 22)]; + T4I = ii[WS(rs, 22)]; + T4q = ri[WS(rs, 38)]; + T4o = FMA(T3i, T4n, T4m); + Ta0 = T3g * T4n; + T4G = T4E * T4F; + Ta9 = T4E * T4I; + T4r = T4p * T4q; + Ta1 = FNMS(T3i, T4l, Ta0); + T4J = FMA(T4H, T4I, T4G); + Taa = FNMS(T4H, T4F, Ta9); + T4t = ii[WS(rs, 38)]; + T4y = ri[WS(rs, 54)]; + T4C = ii[WS(rs, 54)]; + } + } + { + E T5k, T5h, T5l, TaC, T5G, TaL, T5o, T5t, T5x; + { + E T5e, T5f, T5g, T5B, T5F, TaB, T5C, TaK; + { + E T4v, T9Z, Ta3, T4D, Ta8, TgC, Ta4; + T5e = ri[WS(rs, 9)]; + { + E T4u, Ta2, T4z, Ta7; + T4u = FMA(T4s, T4t, T4r); + Ta2 = T4p * T4t; + T4z = T4x * T4y; + Ta7 = T4x * T4C; + T4v = T4o + T4u; + T9Z = T4o - T4u; + Ta3 = FNMS(T4s, T4q, Ta2); + T4D = FMA(T4B, T4C, T4z); + Ta8 = FNMS(T4B, T4y, Ta7); + T5f = T8 * T5e; + } + TgC = Ta1 + Ta3; + Ta4 = Ta1 - Ta3; + { + E T4K, Ta6, TgD, Tab; + T4K = T4D + T4J; + Ta6 = T4D - T4J; + TgD = Ta8 + Taa; + Tab = Ta8 - Taa; + { + E Ta5, Tan, Tac, Tam; + Ta5 = T9Z + Ta4; + Tan = Ta4 - T9Z; + T4L = T4v + T4K; + Tgz = T4K - T4v; + Tac = Ta6 - Tab; + Tam = Ta6 + Tab; + TgE = TgC - TgD; + TiU = TgC + TgD; + Tao = Tam - Tan; + Ted = Tan + Tam; + Tad = Ta5 - Tac; + Teg = Ta5 + Tac; + T5g = ii[WS(rs, 9)]; + } + } + } + T5B = ri[WS(rs, 25)]; + T5F = ii[WS(rs, 25)]; + T5k = ri[WS(rs, 41)]; + T5h = FMA(Tc, T5g, T5f); + TaB = T8 * T5g; + T5C = T5A * T5B; + TaK = T5A * T5F; + T5l = T5j * T5k; + TaC = FNMS(Tc, T5e, TaB); + T5G = FMA(T5E, T5F, T5C); + TaL = FNMS(T5E, T5B, TaK); + T5o = ii[WS(rs, 41)]; + T5t = ri[WS(rs, 57)]; + T5x = ii[WS(rs, 57)]; + } + { + E T75, T76, T77, T7p, T7s, TbK, T7q, TbT; + { + E T5q, TaA, TaE, T5y, TaJ, Th1, TaF; + T75 = ri[WS(rs, 7)]; + { + E T5p, TaD, T5u, TaI; + T5p = FMA(T5n, T5o, T5l); + TaD = T5j * T5o; + T5u = T5s * T5t; + TaI = T5s * T5x; + T5q = T5h + T5p; + TaA = T5h - T5p; + TaE = FNMS(T5n, T5k, TaD); + T5y = FMA(T5w, T5x, T5u); + TaJ = FNMS(T5w, T5t, TaI); + T76 = T1i * T75; + } + Th1 = TaC + TaE; + TaF = TaC - TaE; + { + E T5H, TaH, Th2, TaM; + T5H = T5y + T5G; + TaH = T5y - T5G; + Th2 = TaJ + TaL; + TaM = TaJ - TaL; + { + E TaG, Tbu, TaN, Tbt; + TaG = TaA + TaF; + Tbu = TaF - TaA; + T5I = T5q + T5H; + TgM = T5H - T5q; + TaN = TaH - TaM; + Tbt = TaH + TaM; + Th3 = Th1 - Th2; + Tj0 = Th1 + Th2; + Tbv = Tbt - Tbu; + Tem = Tbu + Tbt; + TaO = TaG - TaN; + Tex = TaG + TaN; + T77 = ii[WS(rs, 7)]; + } + } + } + T7p = ri[WS(rs, 23)]; + T7s = ii[WS(rs, 23)]; + T7a = ri[WS(rs, 39)]; + T78 = FMA(T1k, T77, T76); + TbK = T1i * T77; + T7q = T7o * T7p; + TbT = T7o * T7s; + T7b = T79 * T7a; + TbL = FNMS(T1k, T75, TbK); + T7t = FMA(T7r, T7s, T7q); + TbU = FNMS(T7r, T7p, TbT); + T7d = ii[WS(rs, 39)]; + T7i = ri[WS(rs, 55)]; + T7m = ii[WS(rs, 55)]; + } + } + } + { + E T6i, T6g, T6j, TaY, T6z, TaU, T6l, T6o, T6q; + { + E T5P, T5N, T5Q, Tbd, T66, Tb9, T5S, T5V, T5X; + { + E T5K, T5L, T5M, T61, T65, Tbc, T62, Tb8; + { + E T7f, TbJ, TbN, T7n, TbS, Ths, TbO; + T5K = ri[WS(rs, 5)]; + { + E T7e, TbM, T7j, TbR; + T7e = FMA(T7c, T7d, T7b); + TbM = T79 * T7d; + T7j = T7h * T7i; + TbR = T7h * T7m; + T7f = T78 + T7e; + TbJ = T78 - T7e; + TbN = FNMS(T7c, T7a, TbM); + T7n = FMA(T7l, T7m, T7j); + TbS = FNMS(T7l, T7i, TbR); + T5L = Td * T5K; + } + Ths = TbL + TbN; + TbO = TbL - TbN; + { + E T7u, TbQ, Tht, TbV; + T7u = T7n + T7t; + TbQ = T7n - T7t; + Tht = TbS + TbU; + TbV = TbS - TbU; + { + E TbP, TcD, TbW, TcC; + TbP = TbJ + TbO; + TcD = TbO - TbJ; + T7v = T7f + T7u; + Thd = T7u - T7f; + TbW = TbQ - TbV; + TcC = TbQ + TbV; + Thu = Ths - Tht; + Tjb = Ths + Tht; + TcE = TcC - TcD; + TeF = TcD + TcC; + TbX = TbP - TbW; + TeQ = TbP + TbW; + T5M = ii[WS(rs, 5)]; + } + } + } + T61 = ri[WS(rs, 53)]; + T65 = ii[WS(rs, 53)]; + T5P = ri[WS(rs, 37)]; + T5N = FMA(Th, T5M, T5L); + Tbc = Td * T5M; + T62 = T60 * T61; + Tb8 = T60 * T65; + T5Q = T5O * T5P; + Tbd = FNMS(Th, T5K, Tbc); + T66 = FMA(T64, T65, T62); + Tb9 = FNMS(T64, T61, Tb8); + T5S = ii[WS(rs, 37)]; + T5V = ri[WS(rs, 21)]; + T5X = ii[WS(rs, 21)]; + } + { + E T6b, T6c, T6f, T6u, T6y, TaX, T6v, TaT; + { + E T5U, Tb5, Tbf, T5Y, Tb7; + T6b = ri[WS(rs, 61)]; + { + E T5T, Tbe, T5W, Tb6; + T5T = FMA(T5R, T5S, T5Q); + Tbe = T5O * T5S; + T5W = T3j * T5V; + Tb6 = T3j * T5X; + T5U = T5N + T5T; + Tb5 = T5N - T5T; + Tbf = FNMS(T5R, T5P, Tbe); + T5Y = FMA(T3m, T5X, T5W); + Tb7 = FNMS(T3m, T5V, Tb6); + T6c = T6a * T6b; + } + { + E TgO, Tbg, T67, Tbh; + TgO = Tbd + Tbf; + Tbg = Tbd - Tbf; + T67 = T5Y + T66; + Tbh = T5Y - T66; + { + E TgP, Tba, Tbi, Teo; + TgP = Tb7 + Tb9; + Tba = Tb7 - Tb9; + Tbi = Tbg + Tbh; + Teo = Tbg - Tbh; + { + E TgR, Tbb, Tep, TgQ; + TgR = T5U - T67; + T68 = T5U + T67; + Tbb = Tb5 - Tba; + Tep = Tb5 + Tba; + TgQ = TgO - TgP; + Tj5 = TgO + TgP; + Tez = FMA(KP414213562, Teo, Tep); + Teq = FNMS(KP414213562, Tep, Teo); + Tbj = FNMS(KP414213562, Tbi, Tbb); + Tbx = FMA(KP414213562, Tbb, Tbi); + TgS = TgQ - TgR; + Th5 = TgR + TgQ; + T6f = ii[WS(rs, 61)]; + } + } + } + } + T6u = ri[WS(rs, 45)]; + T6y = ii[WS(rs, 45)]; + T6i = ri[WS(rs, 29)]; + T6g = FMA(T6e, T6f, T6c); + TaX = T6a * T6f; + T6v = T6t * T6u; + TaT = T6t * T6y; + T6j = T6h * T6i; + TaY = FNMS(T6e, T6b, TaX); + T6z = FMA(T6x, T6y, T6v); + TaU = FNMS(T6x, T6u, TaT); + T6l = ii[WS(rs, 29)]; + T6o = ri[WS(rs, 13)]; + T6q = ii[WS(rs, 13)]; + } + } + { + E T7C, T7A, T7D, Tcm, T7T, Tci, T7F, T7I, T7K; + { + E T7x, T7y, T7z, T7O, T7S, Tcl, T7P, Tch; + { + E T6n, TaQ, Tb0, T6r, TaS; + T7x = ri[WS(rs, 3)]; + { + E T6m, TaZ, T6p, TaR; + T6m = FMA(T6k, T6l, T6j); + TaZ = T6h * T6l; + T6p = T17 * T6o; + TaR = T17 * T6q; + T6n = T6g + T6m; + TaQ = T6g - T6m; + Tb0 = FNMS(T6k, T6i, TaZ); + T6r = FMA(T19, T6q, T6p); + TaS = FNMS(T19, T6o, TaR); + T7y = T3 * T7x; + } + { + E TgU, Tb1, T6A, Tb2; + TgU = TaY + Tb0; + Tb1 = TaY - Tb0; + T6A = T6r + T6z; + Tb2 = T6r - T6z; + { + E TgV, TaV, Tb3, Ter; + TgV = TaS + TaU; + TaV = TaS - TaU; + Tb3 = Tb1 + Tb2; + Ter = Tb1 - Tb2; + { + E TgT, TaW, Tes, TgW; + TgT = T6n - T6A; + T6B = T6n + T6A; + TaW = TaQ - TaV; + Tes = TaQ + TaV; + TgW = TgU - TgV; + Tj6 = TgU + TgV; + TeA = FNMS(KP414213562, Ter, Tes); + Tet = FMA(KP414213562, Tes, Ter); + Tb4 = FMA(KP414213562, Tb3, TaW); + Tby = FNMS(KP414213562, TaW, Tb3); + TgX = TgT + TgW; + Th6 = TgT - TgW; + T7z = ii[WS(rs, 3)]; + } + } + } + } + T7O = ri[WS(rs, 51)]; + T7S = ii[WS(rs, 51)]; + T7C = ri[WS(rs, 35)]; + T7A = FMA(T6, T7z, T7y); + Tcl = T3 * T7z; + T7P = T7N * T7O; + Tch = T7N * T7S; + T7D = T7B * T7C; + Tcm = FNMS(T6, T7x, Tcl); + T7T = FMA(T7R, T7S, T7P); + Tci = FNMS(T7R, T7O, Tch); + T7F = ii[WS(rs, 35)]; + T7I = ri[WS(rs, 19)]; + T7K = ii[WS(rs, 19)]; + } + { + E T7Y, T7Z, T82, T8f, T8j, Tc6, T8g, Tc2; + { + E T7H, Tce, Tco, T7L, Tcg; + T7Y = ri[WS(rs, 59)]; + { + E T7G, Tcn, T7J, Tcf; + T7G = FMA(T7E, T7F, T7D); + Tcn = T7B * T7F; + T7J = T2u * T7I; + Tcf = T2u * T7K; + T7H = T7A + T7G; + Tce = T7A - T7G; + Tco = FNMS(T7E, T7C, Tcn); + T7L = FMA(T2x, T7K, T7J); + Tcg = FNMS(T2x, T7I, Tcf); + T7Z = T7X * T7Y; + } + { + E Thf, Tcp, T7U, Tcq; + Thf = Tcm + Tco; + Tcp = Tcm - Tco; + T7U = T7L + T7T; + Tcq = T7L - T7T; + { + E Thg, Tcj, Tcr, TeH; + Thg = Tcg + Tci; + Tcj = Tcg - Tci; + Tcr = Tcp + Tcq; + TeH = Tcp - Tcq; + { + E Thi, Tck, TeI, Thh; + Thi = T7H - T7U; + T7V = T7H + T7U; + Tck = Tce - Tcj; + TeI = Tce + Tcj; + Thh = Thf - Thg; + Tjg = Thf + Thg; + TeS = FMA(KP414213562, TeH, TeI); + TeJ = FNMS(KP414213562, TeI, TeH); + Tcs = FNMS(KP414213562, Tcr, Tck); + TcG = FMA(KP414213562, Tck, Tcr); + Thj = Thh - Thi; + Thw = Thi + Thh; + T82 = ii[WS(rs, 59)]; + } + } + } + } + T8f = ri[WS(rs, 43)]; + T8j = ii[WS(rs, 43)]; + T84 = ri[WS(rs, 27)]; + T83 = FMA(T81, T82, T7Z); + Tc6 = T7X * T82; + T8g = T8e * T8f; + Tc2 = T8e * T8j; + T85 = Te * T84; + Tc7 = FNMS(T81, T7Y, Tc6); + T8k = FMA(T8i, T8j, T8g); + Tc3 = FNMS(T8i, T8f, Tc2); + T86 = ii[WS(rs, 27)]; + T89 = ri[WS(rs, 11)]; + T8b = ii[WS(rs, 11)]; + } + } + } + } + } + { + E TeT, TeM, Tcd, TcH, Tho, Thx, Tkw, Tkv, Tl6, Tl5; + { + E TiI, Tkp, TiQ, TiS, TiL, Tkq, TiP, TiV, Tjf, Tjd, Tjc, Tji, Tj4, Tj2, Tj1; + E Tj7, Tkh, Tki; + { + E TjG, T2I, Tkj, T4N, Tkk, Tkf, Tk5, TjJ, T8o, Tk2, TjL, T6D, TjY, TjU, Tk1; + E TjO; + { + E T8m, Tjh, T3L, T4M, Tk6, Tke, TjH, TjI; + { + E T1C, T88, TbZ, Tc9, T8c, Tc1, T2H; + T1C = TY + T1B; + TiI = TY - T1B; + { + E T87, Tc8, T8a, Tc0; + T87 = FMA(Ti, T86, T85); + Tc8 = Te * T86; + T8a = Tu * T89; + Tc0 = Tu * T8b; + T88 = T83 + T87; + TbZ = T83 - T87; + Tc9 = FNMS(Ti, T84, Tc8); + T8c = FMA(Tx, T8b, T8a); + Tc1 = FNMS(Tx, T89, Tc0); + T2H = T27 + T2G; + Tkp = T2G - T27; + } + { + E Thl, Tca, T8l, Tcb; + Thl = Tc7 + Tc9; + Tca = Tc7 - Tc9; + T8l = T8c + T8k; + Tcb = T8c - T8k; + { + E Thm, Tc4, Tcc, TeK; + Thm = Tc1 + Tc3; + Tc4 = Tc1 - Tc3; + Tcc = Tca + Tcb; + TeK = Tca - Tcb; + { + E Thk, Tc5, TeL, Thn; + Thk = T88 - T8l; + T8m = T88 + T8l; + Tc5 = TbZ - Tc4; + TeL = TbZ + Tc4; + Thn = Thl - Thm; + Tjh = Thl + Thm; + TeT = FNMS(KP414213562, TeK, TeL); + TeM = FMA(KP414213562, TeL, TeK); + Tcd = FMA(KP414213562, Tcc, Tc5); + TcH = FNMS(KP414213562, Tc5, Tcc); + Tho = Thk + Thn; + Thx = Thk - Thn; + TjG = T1C - T2H; + T2I = T1C + T2H; + } + } + } + } + TiQ = T39 - T3K; + T3L = T39 + T3K; + T4M = T4k + T4L; + TiS = T4k - T4L; + TiL = TiJ - TiK; + Tk6 = TiJ + TiK; + Tke = Tk7 + Tkd; + Tkq = Tkd - Tk7; + TiP = TiN - TiO; + TjH = TiN + TiO; + Tkj = T4M - T3L; + T4N = T3L + T4M; + Tkk = Tke - Tk6; + Tkf = Tk6 + Tke; + TjI = TiT + TiU; + TiV = TiT - TiU; + { + E TjR, TjQ, TjS, T7w, T8n; + Tjf = T74 - T7v; + T7w = T74 + T7v; + T8n = T7V + T8m; + Tjd = T8m - T7V; + Tjc = Tja - Tjb; + TjR = Tja + Tjb; + Tk5 = TjH + TjI; + TjJ = TjH - TjI; + TjQ = T7w - T8n; + T8o = T7w + T8n; + Tji = Tjg - Tjh; + TjS = Tjg + Tjh; + { + E TjM, TjN, T5J, T6C, TjT; + Tj4 = T5d - T5I; + T5J = T5d + T5I; + T6C = T68 + T6B; + Tj2 = T6B - T68; + TjT = TjR - TjS; + Tk2 = TjR + TjS; + Tj1 = TiZ - Tj0; + TjM = TiZ + Tj0; + TjL = T5J - T6C; + T6D = T5J + T6C; + Tj7 = Tj5 - Tj6; + TjN = Tj5 + Tj6; + TjY = TjQ + TjT; + TjU = TjQ - TjT; + Tk1 = TjM + TjN; + TjO = TjM - TjN; + } + } + } + { + E Tk0, Tk3, TjW, Tko, Tkn, Tkl, Tkm, TjZ; + { + E TjP, TjX, Tk4, Tkg, T4O, T8p, TjK, TjV; + Tk0 = T2I - T4N; + T4O = T2I + T4N; + T8p = T6D + T8o; + Tkh = T8o - T6D; + TjP = TjL + TjO; + TjX = TjO - TjL; + Tk3 = Tk1 - Tk2; + Tk4 = Tk1 + Tk2; + ri[0] = T4O + T8p; + ri[WS(rs, 32)] = T4O - T8p; + Tkg = Tk5 + Tkf; + Tki = Tkf - Tk5; + TjW = TjG - TjJ; + TjK = TjG + TjJ; + TjV = TjP + TjU; + Tko = TjU - TjP; + Tkn = Tkk - Tkj; + Tkl = Tkj + Tkk; + ii[WS(rs, 32)] = Tkg - Tk4; + ii[0] = Tk4 + Tkg; + ri[WS(rs, 8)] = FMA(KP707106781, TjV, TjK); + ri[WS(rs, 40)] = FNMS(KP707106781, TjV, TjK); + Tkm = TjX + TjY; + TjZ = TjX - TjY; + } + ii[WS(rs, 40)] = FNMS(KP707106781, Tkm, Tkl); + ii[WS(rs, 8)] = FMA(KP707106781, Tkm, Tkl); + ri[WS(rs, 24)] = FMA(KP707106781, TjZ, TjW); + ri[WS(rs, 56)] = FNMS(KP707106781, TjZ, TjW); + ii[WS(rs, 56)] = FNMS(KP707106781, Tko, Tkn); + ii[WS(rs, 24)] = FMA(KP707106781, Tko, Tkn); + ri[WS(rs, 16)] = Tk0 + Tk3; + ri[WS(rs, 48)] = Tk0 - Tk3; + } + } + { + E Tjq, TiM, Tkx, Tkr, Tjt, Tky, Tks, TiX, Tjz, Tje, Tjx, TjD, Tjn, Tj9, Tjr; + E TiR; + ii[WS(rs, 48)] = Tki - Tkh; + ii[WS(rs, 16)] = Tkh + Tki; + Tjq = TiI + TiL; + TiM = TiI - TiL; + Tkx = Tkq - Tkp; + Tkr = Tkp + Tkq; + Tjr = TiQ + TiP; + TiR = TiP - TiQ; + { + E Tjw, Tj3, Tjs, TiW, Tjv, Tj8; + Tjs = TiS - TiV; + TiW = TiS + TiV; + Tjw = Tj1 + Tj2; + Tj3 = Tj1 - Tj2; + Tjt = Tjr + Tjs; + Tky = Tjs - Tjr; + Tks = TiR + TiW; + TiX = TiR - TiW; + Tjv = Tj4 + Tj7; + Tj8 = Tj4 - Tj7; + Tjz = Tjc + Tjd; + Tje = Tjc - Tjd; + Tjx = FMA(KP414213562, Tjw, Tjv); + TjD = FNMS(KP414213562, Tjv, Tjw); + Tjn = FNMS(KP414213562, Tj3, Tj8); + Tj9 = FMA(KP414213562, Tj8, Tj3); + } + { + E Tjm, TiY, Tkz, TkB, Tjy, Tjj; + Tjm = FNMS(KP707106781, TiX, TiM); + TiY = FMA(KP707106781, TiX, TiM); + Tkz = FMA(KP707106781, Tky, Tkx); + TkB = FNMS(KP707106781, Tky, Tkx); + Tjy = Tjf + Tji; + Tjj = Tjf - Tji; + { + E TjC, Tkt, Tku, TjF; + { + E Tju, TjE, Tjo, Tjk, TjB, TjA; + TjC = FNMS(KP707106781, Tjt, Tjq); + Tju = FMA(KP707106781, Tjt, Tjq); + TjA = FNMS(KP414213562, Tjz, Tjy); + TjE = FMA(KP414213562, Tjy, Tjz); + Tjo = FMA(KP414213562, Tje, Tjj); + Tjk = FNMS(KP414213562, Tjj, Tje); + TjB = Tjx + TjA; + Tkw = TjA - Tjx; + Tkv = FNMS(KP707106781, Tks, Tkr); + Tkt = FMA(KP707106781, Tks, Tkr); + { + E Tjp, TkA, TkC, Tjl; + Tjp = Tjn + Tjo; + TkA = Tjo - Tjn; + TkC = Tj9 + Tjk; + Tjl = Tj9 - Tjk; + ri[WS(rs, 4)] = FMA(KP923879532, TjB, Tju); + ri[WS(rs, 36)] = FNMS(KP923879532, TjB, Tju); + ri[WS(rs, 60)] = FMA(KP923879532, Tjp, Tjm); + ri[WS(rs, 28)] = FNMS(KP923879532, Tjp, Tjm); + ii[WS(rs, 44)] = FNMS(KP923879532, TkA, Tkz); + ii[WS(rs, 12)] = FMA(KP923879532, TkA, Tkz); + ii[WS(rs, 60)] = FMA(KP923879532, TkC, TkB); + ii[WS(rs, 28)] = FNMS(KP923879532, TkC, TkB); + ri[WS(rs, 12)] = FMA(KP923879532, Tjl, TiY); + ri[WS(rs, 44)] = FNMS(KP923879532, Tjl, TiY); + Tku = TjD + TjE; + TjF = TjD - TjE; + } + } + ii[WS(rs, 36)] = FNMS(KP923879532, Tku, Tkt); + ii[WS(rs, 4)] = FMA(KP923879532, Tku, Tkt); + ri[WS(rs, 20)] = FMA(KP923879532, TjF, TjC); + ri[WS(rs, 52)] = FNMS(KP923879532, TjF, TjC); + } + } + } + } + { + E TkV, Tl1, ThG, Tgk, TkH, TkN, Tis, Ti0, Thv, ThJ, TkO, TkI, TgH, Thy, TiC; + E TiG, Tiq, Tim, ThN, ThT, ThD, Th9, TkW, Tiv, Tl2, Ti7, ThP, Thq, Tiz, TiF; + E Tip, Tif; + { + E Ti1, Ti2, Ti4, Ti5, Thp, The, Tij, TiB, Tii, Tik; + { + E ThW, Tg8, TkT, TkF, ThX, ThY, TkU, Tgj, Tgd, Tgi; + ThW = Tg4 - Tg7; + Tg8 = Tg4 + Tg7; + TkT = TkE - TkD; + TkF = TkD + TkE; + ThX = Tgc - Tg9; + Tgd = Tg9 + Tgc; + ii[WS(rs, 52)] = FNMS(KP923879532, Tkw, Tkv); + ii[WS(rs, 20)] = FMA(KP923879532, Tkw, Tkv); + Tgi = Tge - Tgh; + ThY = Tge + Tgh; + TkU = Tgi - Tgd; + Tgj = Tgd + Tgi; + { + E TgA, ThH, Tgv, TgF; + { + E Tgp, TkG, ThZ, Tgu; + Ti1 = Tgn - Tgo; + Tgp = Tgn + Tgo; + TkV = FMA(KP707106781, TkU, TkT); + Tl1 = FNMS(KP707106781, TkU, TkT); + ThG = FMA(KP707106781, Tgj, Tg8); + Tgk = FNMS(KP707106781, Tgj, Tg8); + TkG = ThX + ThY; + ThZ = ThX - ThY; + Tgu = Tgq + Tgt; + Ti2 = Tgq - Tgt; + Ti4 = Tgy - Tgz; + TgA = Tgy + Tgz; + TkH = FMA(KP707106781, TkG, TkF); + TkN = FNMS(KP707106781, TkG, TkF); + Tis = FNMS(KP707106781, ThZ, ThW); + Ti0 = FMA(KP707106781, ThZ, ThW); + ThH = FMA(KP414213562, Tgp, Tgu); + Tgv = FNMS(KP414213562, Tgu, Tgp); + TgF = TgB + TgE; + Ti5 = TgB - TgE; + } + { + E Tig, Tih, ThI, TgG; + Thv = Thr + Thu; + Tig = Thr - Thu; + Tih = Tho - Thj; + Thp = Thj + Tho; + The = Thc + Thd; + Tij = Thc - Thd; + ThI = FNMS(KP414213562, TgA, TgF); + TgG = FMA(KP414213562, TgF, TgA); + TiB = FMA(KP707106781, Tih, Tig); + Tii = FNMS(KP707106781, Tih, Tig); + ThJ = ThH + ThI; + TkO = ThI - ThH; + TkI = Tgv + TgG; + TgH = Tgv - TgG; + Tik = Thw - Thx; + Thy = Thw + Thx; + } + } + } + { + E Tic, Tia, Ti9, Tid, Tit, Ti3; + { + E Th4, ThM, TgZ, Th7, ThL, Th8; + { + E TgN, TgY, TiA, Til; + Tic = TgL - TgM; + TgN = TgL + TgM; + TgY = TgS + TgX; + Tia = TgX - TgS; + Ti9 = Th0 - Th3; + Th4 = Th0 + Th3; + TiA = FMA(KP707106781, Tik, Tij); + Til = FNMS(KP707106781, Tik, Tij); + ThM = FMA(KP707106781, TgY, TgN); + TgZ = FNMS(KP707106781, TgY, TgN); + TiC = FNMS(KP198912367, TiB, TiA); + TiG = FMA(KP198912367, TiA, TiB); + Tiq = FMA(KP668178637, Tii, Til); + Tim = FNMS(KP668178637, Til, Tii); + Th7 = Th5 + Th6; + Tid = Th5 - Th6; + } + ThL = FMA(KP707106781, Th7, Th4); + Th8 = FNMS(KP707106781, Th7, Th4); + Tit = FNMS(KP414213562, Ti1, Ti2); + Ti3 = FMA(KP414213562, Ti2, Ti1); + ThN = FMA(KP198912367, ThM, ThL); + ThT = FNMS(KP198912367, ThL, ThM); + ThD = FNMS(KP668178637, TgZ, Th8); + Th9 = FMA(KP668178637, Th8, TgZ); + } + { + E Tiy, Tib, Tiu, Ti6, Tix, Tie; + Tiu = FMA(KP414213562, Ti4, Ti5); + Ti6 = FNMS(KP414213562, Ti5, Ti4); + Tiy = FMA(KP707106781, Tia, Ti9); + Tib = FNMS(KP707106781, Tia, Ti9); + TkW = Tiu - Tit; + Tiv = Tit + Tiu; + Tl2 = Ti3 + Ti6; + Ti7 = Ti3 - Ti6; + Tix = FMA(KP707106781, Tid, Tic); + Tie = FNMS(KP707106781, Tid, Tic); + ThP = FMA(KP707106781, Thp, The); + Thq = FNMS(KP707106781, Thp, The); + Tiz = FMA(KP198912367, Tiy, Tix); + TiF = FNMS(KP198912367, Tix, Tiy); + Tip = FNMS(KP668178637, Tib, Tie); + Tif = FMA(KP668178637, Tie, Tib); + } + } + } + { + E TkM, TkL, Tl0, TkZ; + { + E ThC, TgI, TkP, TkR, ThO, Thz; + ThC = FNMS(KP923879532, TgH, Tgk); + TgI = FMA(KP923879532, TgH, Tgk); + TkP = FMA(KP923879532, TkO, TkN); + TkR = FNMS(KP923879532, TkO, TkN); + ThO = FMA(KP707106781, Thy, Thv); + Thz = FNMS(KP707106781, Thy, Thv); + { + E ThS, TkJ, TkK, ThV; + { + E ThK, ThU, ThE, ThA, ThR, ThQ; + ThS = FNMS(KP923879532, ThJ, ThG); + ThK = FMA(KP923879532, ThJ, ThG); + ThQ = FNMS(KP198912367, ThP, ThO); + ThU = FMA(KP198912367, ThO, ThP); + ThE = FMA(KP668178637, Thq, Thz); + ThA = FNMS(KP668178637, Thz, Thq); + ThR = ThN + ThQ; + TkM = ThQ - ThN; + TkL = FNMS(KP923879532, TkI, TkH); + TkJ = FMA(KP923879532, TkI, TkH); + { + E ThF, TkQ, TkS, ThB; + ThF = ThD + ThE; + TkQ = ThE - ThD; + TkS = Th9 + ThA; + ThB = Th9 - ThA; + ri[WS(rs, 2)] = FMA(KP980785280, ThR, ThK); + ri[WS(rs, 34)] = FNMS(KP980785280, ThR, ThK); + ri[WS(rs, 58)] = FMA(KP831469612, ThF, ThC); + ri[WS(rs, 26)] = FNMS(KP831469612, ThF, ThC); + ii[WS(rs, 42)] = FNMS(KP831469612, TkQ, TkP); + ii[WS(rs, 10)] = FMA(KP831469612, TkQ, TkP); + ii[WS(rs, 58)] = FMA(KP831469612, TkS, TkR); + ii[WS(rs, 26)] = FNMS(KP831469612, TkS, TkR); + ri[WS(rs, 10)] = FMA(KP831469612, ThB, TgI); + ri[WS(rs, 42)] = FNMS(KP831469612, ThB, TgI); + TkK = ThT + ThU; + ThV = ThT - ThU; + } + } + ii[WS(rs, 34)] = FNMS(KP980785280, TkK, TkJ); + ii[WS(rs, 2)] = FMA(KP980785280, TkK, TkJ); + ri[WS(rs, 18)] = FMA(KP980785280, ThV, ThS); + ri[WS(rs, 50)] = FNMS(KP980785280, ThV, ThS); + } + } + { + E Tio, TkX, TkY, Tir, Ti8, Tin; + Tio = FNMS(KP923879532, Ti7, Ti0); + Ti8 = FMA(KP923879532, Ti7, Ti0); + Tin = Tif + Tim; + Tl0 = Tim - Tif; + TkZ = FNMS(KP923879532, TkW, TkV); + TkX = FMA(KP923879532, TkW, TkV); + ii[WS(rs, 50)] = FNMS(KP980785280, TkM, TkL); + ii[WS(rs, 18)] = FMA(KP980785280, TkM, TkL); + ri[WS(rs, 6)] = FMA(KP831469612, Tin, Ti8); + ri[WS(rs, 38)] = FNMS(KP831469612, Tin, Ti8); + TkY = Tip + Tiq; + Tir = Tip - Tiq; + ii[WS(rs, 38)] = FNMS(KP831469612, TkY, TkX); + ii[WS(rs, 6)] = FMA(KP831469612, TkY, TkX); + ri[WS(rs, 22)] = FMA(KP831469612, Tir, Tio); + ri[WS(rs, 54)] = FNMS(KP831469612, Tir, Tio); + } + { + E TiE, Tl3, Tl4, TiH, Tiw, TiD; + TiE = FMA(KP923879532, Tiv, Tis); + Tiw = FNMS(KP923879532, Tiv, Tis); + TiD = Tiz - TiC; + Tl6 = Tiz + TiC; + Tl5 = FMA(KP923879532, Tl2, Tl1); + Tl3 = FNMS(KP923879532, Tl2, Tl1); + ii[WS(rs, 54)] = FNMS(KP831469612, Tl0, TkZ); + ii[WS(rs, 22)] = FMA(KP831469612, Tl0, TkZ); + ri[WS(rs, 14)] = FMA(KP980785280, TiD, Tiw); + ri[WS(rs, 46)] = FNMS(KP980785280, TiD, Tiw); + Tl4 = TiG - TiF; + TiH = TiF + TiG; + ii[WS(rs, 46)] = FNMS(KP980785280, Tl4, Tl3); + ii[WS(rs, 14)] = FMA(KP980785280, Tl4, Tl3); + ri[WS(rs, 62)] = FMA(KP980785280, TiH, TiE); + ri[WS(rs, 30)] = FNMS(KP980785280, TiH, TiE); + } + } + } + { + E Tla, TdV, TdO, Tm6, Tm5, TdR; + { + E TcT, TlO, TlI, Tar, TcX, Td3, TcN, TbB, TdM, TdQ, TdA, Tdw, TdJ, TdP, Tdz; + E Tdp, TlW, TdF, Tm2, Tdh, Td7, T91, Td6, T8M, TlT, TlF, Td0, Td4, TcO, TcK; + E T9g, Td8; + { + E Tdb, Tdc, Tde, Tdf, Tdm, Tdk, Tdj, Tdn, TcF, Tct, TbY, Tdt, TdL, Tds, Tdu; + E TcI, TdD, Tdd; + { + E Tae, TcR, T9R, Tap, T9F, T9Q; + Tdb = FMA(KP707106781, T9E, T9p); + T9F = FNMS(KP707106781, T9E, T9p); + T9Q = FNMS(KP707106781, T9P, T9M); + Tdc = FMA(KP707106781, T9P, T9M); + Tde = FMA(KP707106781, Tad, T9Y); + Tae = FNMS(KP707106781, Tad, T9Y); + ii[WS(rs, 62)] = FMA(KP980785280, Tl6, Tl5); + ii[WS(rs, 30)] = FNMS(KP980785280, Tl6, Tl5); + TcR = FMA(KP668178637, T9F, T9Q); + T9R = FNMS(KP668178637, T9Q, T9F); + Tap = FNMS(KP707106781, Tao, Tal); + Tdf = FMA(KP707106781, Tao, Tal); + { + E Tbw, TcW, Tbl, Tbz; + { + E TaP, Tbk, TcS, Taq; + Tdm = FMA(KP707106781, TaO, Taz); + TaP = FNMS(KP707106781, TaO, Taz); + Tbk = Tb4 - Tbj; + Tdk = Tbj + Tb4; + Tdj = FMA(KP707106781, Tbv, Tbs); + Tbw = FNMS(KP707106781, Tbv, Tbs); + TcS = FNMS(KP668178637, Tae, Tap); + Taq = FMA(KP668178637, Tap, Tae); + TcW = FMA(KP923879532, Tbk, TaP); + Tbl = FNMS(KP923879532, Tbk, TaP); + TcT = TcR + TcS; + TlO = TcS - TcR; + TlI = T9R + Taq; + Tar = T9R - Taq; + Tbz = Tbx - Tby; + Tdn = Tbx + Tby; + } + { + E Tdq, Tdr, TcV, TbA; + TcF = FNMS(KP707106781, TcE, TcB); + Tdq = FMA(KP707106781, TcE, TcB); + Tdr = Tcs + Tcd; + Tct = Tcd - Tcs; + TbY = FNMS(KP707106781, TbX, TbI); + Tdt = FMA(KP707106781, TbX, TbI); + TcV = FMA(KP923879532, Tbz, Tbw); + TbA = FNMS(KP923879532, Tbz, Tbw); + TdL = FMA(KP923879532, Tdr, Tdq); + Tds = FNMS(KP923879532, Tdr, Tdq); + TcX = FMA(KP303346683, TcW, TcV); + Td3 = FNMS(KP303346683, TcV, TcW); + TcN = FNMS(KP534511135, Tbl, TbA); + TbB = FMA(KP534511135, TbA, Tbl); + Tdu = TcG + TcH; + TcI = TcG - TcH; + } + } + } + { + E TdI, Tdl, TdK, Tdv, TdH, Tdo; + TdK = FMA(KP923879532, Tdu, Tdt); + Tdv = FNMS(KP923879532, Tdu, Tdt); + TdI = FMA(KP923879532, Tdk, Tdj); + Tdl = FNMS(KP923879532, Tdk, Tdj); + TdM = FNMS(KP098491403, TdL, TdK); + TdQ = FMA(KP098491403, TdK, TdL); + TdA = FMA(KP820678790, Tds, Tdv); + Tdw = FNMS(KP820678790, Tdv, Tds); + TdH = FMA(KP923879532, Tdn, Tdm); + Tdo = FNMS(KP923879532, Tdn, Tdm); + TdD = FNMS(KP198912367, Tdb, Tdc); + Tdd = FMA(KP198912367, Tdc, Tdb); + TdJ = FMA(KP098491403, TdI, TdH); + TdP = FNMS(KP098491403, TdH, TdI); + Tdz = FNMS(KP820678790, Tdl, Tdo); + Tdp = FMA(KP820678790, Tdo, Tdl); + } + { + E TcZ, Tcu, TdE, Tdg; + TdE = FMA(KP198912367, Tde, Tdf); + Tdg = FNMS(KP198912367, Tdf, Tde); + TcZ = FMA(KP923879532, Tct, TbY); + Tcu = FNMS(KP923879532, Tct, TbY); + TlW = TdE - TdD; + TdF = TdD + TdE; + Tm2 = Tdd + Tdg; + Tdh = Tdd - Tdg; + { + E T8L, TlE, TcY, TcJ; + Tla = T8D + T8K; + T8L = T8D - T8K; + TlE = TdU - TdT; + TdV = TdT + TdU; + Td7 = FNMS(KP414213562, T8T, T90); + T91 = FMA(KP414213562, T90, T8T); + TcY = FMA(KP923879532, TcI, TcF); + TcJ = FNMS(KP923879532, TcI, TcF); + Td6 = FNMS(KP707106781, T8L, T8w); + T8M = FMA(KP707106781, T8L, T8w); + TlT = FNMS(KP707106781, TlE, TlD); + TlF = FMA(KP707106781, TlE, TlD); + Td0 = FNMS(KP303346683, TcZ, TcY); + Td4 = FMA(KP303346683, TcY, TcZ); + TcO = FMA(KP534511135, Tcu, TcJ); + TcK = FNMS(KP534511135, TcJ, Tcu); + T9g = FNMS(KP414213562, T9f, T98); + Td8 = FMA(KP414213562, T98, T9f); + } + } + } + { + E Tm1, TlV, TdC, Tda, Td2, TlM, TlL, Td5; + { + E TlS, TcQ, TlH, TcM, TlR, TcP; + { + E TcL, Tas, TlP, TlQ, TlN; + TlS = TbB + TcK; + TcL = TbB - TcK; + { + E TlU, T9h, TlG, Td9, T9i; + TlU = T91 + T9g; + T9h = T91 - T9g; + TlG = Td8 - Td7; + Td9 = Td7 + Td8; + Tm1 = FMA(KP923879532, TlU, TlT); + TlV = FNMS(KP923879532, TlU, TlT); + TcQ = FMA(KP923879532, T9h, T8M); + T9i = FNMS(KP923879532, T9h, T8M); + TlN = FNMS(KP923879532, TlG, TlF); + TlH = FMA(KP923879532, TlG, TlF); + TdC = FMA(KP923879532, Td9, Td6); + Tda = FNMS(KP923879532, Td9, Td6); + Tas = FMA(KP831469612, Tar, T9i); + TcM = FNMS(KP831469612, Tar, T9i); + } + TlR = FNMS(KP831469612, TlO, TlN); + TlP = FMA(KP831469612, TlO, TlN); + TlQ = TcO - TcN; + TcP = TcN + TcO; + ri[WS(rs, 11)] = FMA(KP881921264, TcL, Tas); + ri[WS(rs, 43)] = FNMS(KP881921264, TcL, Tas); + ii[WS(rs, 43)] = FNMS(KP881921264, TlQ, TlP); + ii[WS(rs, 11)] = FMA(KP881921264, TlQ, TlP); + } + { + E TcU, Td1, TlJ, TlK; + Td2 = FNMS(KP831469612, TcT, TcQ); + TcU = FMA(KP831469612, TcT, TcQ); + ri[WS(rs, 59)] = FMA(KP881921264, TcP, TcM); + ri[WS(rs, 27)] = FNMS(KP881921264, TcP, TcM); + ii[WS(rs, 59)] = FMA(KP881921264, TlS, TlR); + ii[WS(rs, 27)] = FNMS(KP881921264, TlS, TlR); + Td1 = TcX + Td0; + TlM = Td0 - TcX; + TlL = FNMS(KP831469612, TlI, TlH); + TlJ = FMA(KP831469612, TlI, TlH); + TlK = Td3 + Td4; + Td5 = Td3 - Td4; + ri[WS(rs, 3)] = FMA(KP956940335, Td1, TcU); + ri[WS(rs, 35)] = FNMS(KP956940335, Td1, TcU); + ii[WS(rs, 35)] = FNMS(KP956940335, TlK, TlJ); + ii[WS(rs, 3)] = FMA(KP956940335, TlK, TlJ); + } + } + { + E Tdy, Tm0, TlZ, TdB; + { + E Tdi, Tdx, TlX, TlY; + Tdy = FNMS(KP980785280, Tdh, Tda); + Tdi = FMA(KP980785280, Tdh, Tda); + ri[WS(rs, 19)] = FMA(KP956940335, Td5, Td2); + ri[WS(rs, 51)] = FNMS(KP956940335, Td5, Td2); + ii[WS(rs, 51)] = FNMS(KP956940335, TlM, TlL); + ii[WS(rs, 19)] = FMA(KP956940335, TlM, TlL); + Tdx = Tdp + Tdw; + Tm0 = Tdw - Tdp; + TlZ = FNMS(KP980785280, TlW, TlV); + TlX = FMA(KP980785280, TlW, TlV); + TlY = Tdz + TdA; + TdB = Tdz - TdA; + ri[WS(rs, 7)] = FMA(KP773010453, Tdx, Tdi); + ri[WS(rs, 39)] = FNMS(KP773010453, Tdx, Tdi); + ii[WS(rs, 39)] = FNMS(KP773010453, TlY, TlX); + ii[WS(rs, 7)] = FMA(KP773010453, TlY, TlX); + } + { + E TdG, TdN, Tm3, Tm4; + TdO = FMA(KP980785280, TdF, TdC); + TdG = FNMS(KP980785280, TdF, TdC); + ri[WS(rs, 23)] = FMA(KP773010453, TdB, Tdy); + ri[WS(rs, 55)] = FNMS(KP773010453, TdB, Tdy); + ii[WS(rs, 55)] = FNMS(KP773010453, Tm0, TlZ); + ii[WS(rs, 23)] = FMA(KP773010453, Tm0, TlZ); + TdN = TdJ - TdM; + Tm6 = TdJ + TdM; + Tm5 = FMA(KP980785280, Tm2, Tm1); + Tm3 = FNMS(KP980785280, Tm2, Tm1); + Tm4 = TdQ - TdP; + TdR = TdP + TdQ; + ri[WS(rs, 15)] = FMA(KP995184726, TdN, TdG); + ri[WS(rs, 47)] = FNMS(KP995184726, TdN, TdG); + ii[WS(rs, 47)] = FNMS(KP995184726, Tm4, Tm3); + ii[WS(rs, 15)] = FMA(KP995184726, Tm4, Tm3); + } + } + } + } + { + E Tf5, Tlk, Tle, Tej, Tf9, Tff, TeZ, TeD, TfY, Tg2, TfM, TfI, TfV, Tg1, TfL; + E TfB, Tls, TfR, Tly, Tft, Tfj, TdZ, Tfi, TdW, Tlp, Tlb, Tfc, Tfg, Tf0, TeW; + E Te2, Tfk; + { + E Tfn, Tfo, Tfq, Tfr, Tfy, Tfw, Tfv, Tfz, TeR, TeN, TeG, TfF, TfX, TfE, TfG; + E TeU, TfP, Tfp; + { + E Te7, Tea, Tee, Teh; + Tfn = FNMS(KP707106781, Te6, Te5); + Te7 = FMA(KP707106781, Te6, Te5); + ri[WS(rs, 63)] = FMA(KP995184726, TdR, TdO); + ri[WS(rs, 31)] = FNMS(KP995184726, TdR, TdO); + ii[WS(rs, 63)] = FMA(KP995184726, Tm6, Tm5); + ii[WS(rs, 31)] = FNMS(KP995184726, Tm6, Tm5); + Tea = FMA(KP707106781, Te9, Te8); + Tfo = FNMS(KP707106781, Te9, Te8); + Tfq = FNMS(KP707106781, Ted, Tec); + Tee = FMA(KP707106781, Ted, Tec); + Teh = FMA(KP707106781, Teg, Tef); + Tfr = FNMS(KP707106781, Teg, Tef); + { + E Tey, Tf8, Tev, TeB; + { + E Ten, Tf3, Teb, Tf4, Tei, Teu; + Tfy = FNMS(KP707106781, Tem, Tel); + Ten = FMA(KP707106781, Tem, Tel); + Tf3 = FMA(KP198912367, Te7, Tea); + Teb = FNMS(KP198912367, Tea, Te7); + Tf4 = FNMS(KP198912367, Tee, Teh); + Tei = FMA(KP198912367, Teh, Tee); + Teu = Teq + Tet; + Tfw = Tet - Teq; + Tfv = FNMS(KP707106781, Tex, Tew); + Tey = FMA(KP707106781, Tex, Tew); + Tf5 = Tf3 + Tf4; + Tlk = Tf4 - Tf3; + Tle = Teb + Tei; + Tej = Teb - Tei; + Tf8 = FMA(KP923879532, Teu, Ten); + Tev = FNMS(KP923879532, Teu, Ten); + TeB = Tez + TeA; + Tfz = Tez - TeA; + } + { + E TfC, TfD, Tf7, TeC; + TeR = FMA(KP707106781, TeQ, TeP); + TfC = FNMS(KP707106781, TeQ, TeP); + TfD = TeM - TeJ; + TeN = TeJ + TeM; + TeG = FMA(KP707106781, TeF, TeE); + TfF = FNMS(KP707106781, TeF, TeE); + Tf7 = FMA(KP923879532, TeB, Tey); + TeC = FNMS(KP923879532, TeB, Tey); + TfX = FMA(KP923879532, TfD, TfC); + TfE = FNMS(KP923879532, TfD, TfC); + Tf9 = FMA(KP098491403, Tf8, Tf7); + Tff = FNMS(KP098491403, Tf7, Tf8); + TeZ = FNMS(KP820678790, Tev, TeC); + TeD = FMA(KP820678790, TeC, Tev); + TfG = TeS - TeT; + TeU = TeS + TeT; + } + } + } + { + E TfU, Tfx, TfW, TfH, TfT, TfA; + TfW = FMA(KP923879532, TfG, TfF); + TfH = FNMS(KP923879532, TfG, TfF); + TfU = FMA(KP923879532, Tfw, Tfv); + Tfx = FNMS(KP923879532, Tfw, Tfv); + TfY = FNMS(KP303346683, TfX, TfW); + Tg2 = FMA(KP303346683, TfW, TfX); + TfM = FMA(KP534511135, TfE, TfH); + TfI = FNMS(KP534511135, TfH, TfE); + TfT = FMA(KP923879532, Tfz, Tfy); + TfA = FNMS(KP923879532, Tfz, Tfy); + TfP = FNMS(KP668178637, Tfn, Tfo); + Tfp = FMA(KP668178637, Tfo, Tfn); + TfV = FMA(KP303346683, TfU, TfT); + Tg1 = FNMS(KP303346683, TfT, TfU); + TfL = FNMS(KP534511135, Tfx, TfA); + TfB = FMA(KP534511135, TfA, Tfx); + } + { + E Tfb, TeO, TfQ, Tfs, Tfa, TeV; + TfQ = FMA(KP668178637, Tfq, Tfr); + Tfs = FNMS(KP668178637, Tfr, Tfq); + Tfb = FMA(KP923879532, TeN, TeG); + TeO = FNMS(KP923879532, TeN, TeG); + Tls = TfQ - TfP; + TfR = TfP + TfQ; + Tly = Tfp + Tfs; + Tft = Tfp - Tfs; + Tfj = FNMS(KP414213562, TdX, TdY); + TdZ = FMA(KP414213562, TdY, TdX); + Tfa = FMA(KP923879532, TeU, TeR); + TeV = FNMS(KP923879532, TeU, TeR); + Tfi = FNMS(KP707106781, TdV, TdS); + TdW = FMA(KP707106781, TdV, TdS); + Tlp = FNMS(KP707106781, Tla, Tl9); + Tlb = FMA(KP707106781, Tla, Tl9); + Tfc = FNMS(KP098491403, Tfb, Tfa); + Tfg = FMA(KP098491403, Tfa, Tfb); + Tf0 = FMA(KP820678790, TeO, TeV); + TeW = FNMS(KP820678790, TeV, TeO); + Te2 = FNMS(KP414213562, Te1, Te0); + Tfk = FMA(KP414213562, Te0, Te1); + } + } + { + E Tlx, Tlr, TfO, Tfm, Tfe, Tli, Tlh, Tfh; + { + E Tlo, Tf2, Tld, TeY, Tln, Tf1; + { + E TeX, Tek, Tll, Tlm, Tlj; + Tlo = TeD + TeW; + TeX = TeD - TeW; + { + E Tlq, Te3, Tlc, Tfl, Te4; + Tlq = Te2 - TdZ; + Te3 = TdZ + Te2; + Tlc = Tfj + Tfk; + Tfl = Tfj - Tfk; + Tlx = FNMS(KP923879532, Tlq, Tlp); + Tlr = FMA(KP923879532, Tlq, Tlp); + Tf2 = FMA(KP923879532, Te3, TdW); + Te4 = FNMS(KP923879532, Te3, TdW); + Tlj = FNMS(KP923879532, Tlc, Tlb); + Tld = FMA(KP923879532, Tlc, Tlb); + TfO = FNMS(KP923879532, Tfl, Tfi); + Tfm = FMA(KP923879532, Tfl, Tfi); + Tek = FMA(KP980785280, Tej, Te4); + TeY = FNMS(KP980785280, Tej, Te4); + } + Tln = FNMS(KP980785280, Tlk, Tlj); + Tll = FMA(KP980785280, Tlk, Tlj); + Tlm = Tf0 - TeZ; + Tf1 = TeZ + Tf0; + ri[WS(rs, 9)] = FMA(KP773010453, TeX, Tek); + ri[WS(rs, 41)] = FNMS(KP773010453, TeX, Tek); + ii[WS(rs, 41)] = FNMS(KP773010453, Tlm, Tll); + ii[WS(rs, 9)] = FMA(KP773010453, Tlm, Tll); + } + { + E Tf6, Tfd, Tlf, Tlg; + Tfe = FNMS(KP980785280, Tf5, Tf2); + Tf6 = FMA(KP980785280, Tf5, Tf2); + ri[WS(rs, 57)] = FMA(KP773010453, Tf1, TeY); + ri[WS(rs, 25)] = FNMS(KP773010453, Tf1, TeY); + ii[WS(rs, 57)] = FMA(KP773010453, Tlo, Tln); + ii[WS(rs, 25)] = FNMS(KP773010453, Tlo, Tln); + Tfd = Tf9 + Tfc; + Tli = Tfc - Tf9; + Tlh = FNMS(KP980785280, Tle, Tld); + Tlf = FMA(KP980785280, Tle, Tld); + Tlg = Tff + Tfg; + Tfh = Tff - Tfg; + ri[WS(rs, 1)] = FMA(KP995184726, Tfd, Tf6); + ri[WS(rs, 33)] = FNMS(KP995184726, Tfd, Tf6); + ii[WS(rs, 33)] = FNMS(KP995184726, Tlg, Tlf); + ii[WS(rs, 1)] = FMA(KP995184726, Tlg, Tlf); + } + } + { + E TfK, Tlw, Tlv, TfN; + { + E Tfu, TfJ, Tlt, Tlu; + TfK = FNMS(KP831469612, Tft, Tfm); + Tfu = FMA(KP831469612, Tft, Tfm); + ri[WS(rs, 17)] = FMA(KP995184726, Tfh, Tfe); + ri[WS(rs, 49)] = FNMS(KP995184726, Tfh, Tfe); + ii[WS(rs, 49)] = FNMS(KP995184726, Tli, Tlh); + ii[WS(rs, 17)] = FMA(KP995184726, Tli, Tlh); + TfJ = TfB + TfI; + Tlw = TfI - TfB; + Tlv = FNMS(KP831469612, Tls, Tlr); + Tlt = FMA(KP831469612, Tls, Tlr); + Tlu = TfL + TfM; + TfN = TfL - TfM; + ri[WS(rs, 5)] = FMA(KP881921264, TfJ, Tfu); + ri[WS(rs, 37)] = FNMS(KP881921264, TfJ, Tfu); + ii[WS(rs, 37)] = FNMS(KP881921264, Tlu, Tlt); + ii[WS(rs, 5)] = FMA(KP881921264, Tlu, Tlt); + } + { + E TfS, TfZ, Tlz, TlA; + Tg0 = FMA(KP831469612, TfR, TfO); + TfS = FNMS(KP831469612, TfR, TfO); + ri[WS(rs, 21)] = FMA(KP881921264, TfN, TfK); + ri[WS(rs, 53)] = FNMS(KP881921264, TfN, TfK); + ii[WS(rs, 53)] = FNMS(KP881921264, Tlw, Tlv); + ii[WS(rs, 21)] = FMA(KP881921264, Tlw, Tlv); + TfZ = TfV - TfY; + TlC = TfV + TfY; + TlB = FMA(KP831469612, Tly, Tlx); + Tlz = FNMS(KP831469612, Tly, Tlx); + TlA = Tg2 - Tg1; + Tg3 = Tg1 + Tg2; + ri[WS(rs, 13)] = FMA(KP956940335, TfZ, TfS); + ri[WS(rs, 45)] = FNMS(KP956940335, TfZ, TfS); + ii[WS(rs, 45)] = FNMS(KP956940335, TlA, Tlz); + ii[WS(rs, 13)] = FMA(KP956940335, TlA, Tlz); + } + } + } + } + } + } + } + } + ri[WS(rs, 61)] = FMA(KP956940335, Tg3, Tg0); + ri[WS(rs, 29)] = FNMS(KP956940335, Tg3, Tg0); + ii[WS(rs, 61)] = FMA(KP956940335, TlC, TlB); + ii[WS(rs, 29)] = FNMS(KP956940335, TlC, TlB); + } + } +} + +static const tw_instr twinstr[] = { + {TW_CEXP, 0, 1}, + {TW_CEXP, 0, 3}, + {TW_CEXP, 0, 9}, + {TW_CEXP, 0, 27}, + {TW_CEXP, 0, 63}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 64, "t2_64", twinstr, &GENUS, {520, 206, 634, 0}, 0, 0, 0 }; + +void X(codelet_t2_64) (planner *p) { + X(kdft_dit_register) (p, t2_64, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 64 -name t2_64 -include t.h */ + +/* + * This function contains 1154 FP additions, 660 FP multiplications, + * (or, 880 additions, 386 multiplications, 274 fused multiply/add), + * 302 stack variables, 15 constants, and 256 memory accesses + */ +#include "t.h" + +static void t2_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP471396736, +0.471396736825997648556387625905254377657460319); + DK(KP881921264, +0.881921264348355029712756863660388349508442621); + DK(KP290284677, +0.290284677254462367636192375817395274691476278); + DK(KP956940335, +0.956940335732208864935797886980269969482849206); + DK(KP634393284, +0.634393284163645498215171613225493370675687095); + DK(KP773010453, +0.773010453362736960810906609758469800971041293); + DK(KP098017140, +0.098017140329560601994195563888641845861136673); + DK(KP995184726, +0.995184726672196886244836953109479921575474869); + DK(KP555570233, +0.555570233019602224742830813948532874374937191); + DK(KP831469612, +0.831469612302545237078788377617905756738560812); + DK(KP980785280, +0.980785280403230449126182236134239036973933731); + DK(KP195090322, +0.195090322016128267848284868477022240927691618); + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP382683432, +0.382683432365089771728459984030398866761344562); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + for (m = mb, W = W + (mb * 10); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 10, MAKE_VOLATILE_STRIDE(128, rs)) { + E T2, T5, T3, T6, Te, T9, TP, T3e, T1e, T39, T3c, TT, T1a, T37, T8; + E Tw, Td, Ty, Tm, Th, T1C, T3K, T1V, T3x, T3I, T1G, T1R, T3v, T2m, T2q; + E T5Y, T6u, T53, T5B, T62, T6w, T57, T5D, T2V, T2X, Tg, TE, T3Y, T3V, T3j; + E Tl, TA, T3g, T1j, T1t, TV, T2C, T2z, T1u, TZ, T1h, To, T1p, T6j, T6H; + E Ts, T1l, T6l, T6F, T2P, T4b, T4x, T5i, T2R, T49, T4z, T5g, TG, T4k, T4m; + E TK, T21, T3O, T3Q, T25, TW, T10, T11, T79, T6X, T5M, T6b, T1v, T30, T69; + E T77, T13, T2F, T2D, T6p, T6O, T1x, T2a, T2f, T6V, T28, T6r, T2h, T6Q, T32; + E T5K, T5w, T4G, T4Q, T3m, T4h, T4I, T5y, T3k, T4f, T41, T4S, T4Y, T3q, T3D; + E T3F, T5r, T3s, T4W, T3Z, T5p; + { + E Ta, Tj, Tx, TC, Tf, Tk, Tz, TD, T1B, T1E, T2o, T2l, T1T, T1Q, T1A; + E T1F, T2p, T2k, T1U, T1P; + { + E T4, T1d, T19, Tb, T1c, T7, Tc, T18, TR, TO, TS, TN; + T2 = W[0]; + T5 = W[1]; + T3 = W[2]; + T6 = W[3]; + Te = W[5]; + T9 = W[4]; + T4 = T2 * T3; + T1d = T5 * T9; + T19 = T5 * Te; + Tb = T2 * T6; + T1c = T2 * Te; + T7 = T5 * T6; + Tc = T5 * T3; + T18 = T2 * T9; + TR = T3 * Te; + TO = T6 * Te; + TS = T6 * T9; + TN = T3 * T9; + TP = TN - TO; + T3e = TR - TS; + T1e = T1c - T1d; + T39 = T1c + T1d; + T3c = TN + TO; + TT = TR + TS; + T1a = T18 + T19; + T37 = T18 - T19; + T8 = T4 - T7; + Ta = T8 * T9; + Tj = T8 * Te; + Tw = T4 + T7; + Tx = Tw * T9; + TC = Tw * Te; + Td = Tb + Tc; + Tf = Td * Te; + Tk = Td * T9; + Ty = Tb - Tc; + Tz = Ty * Te; + TD = Ty * T9; + Tm = W[7]; + T1B = T6 * Tm; + T1E = T3 * Tm; + T2o = T2 * Tm; + T2l = T5 * Tm; + T1T = T9 * Tm; + T1Q = Te * Tm; + Th = W[6]; + T1A = T3 * Th; + T1F = T6 * Th; + T2p = T5 * Th; + T2k = T2 * Th; + T1U = Te * Th; + T1P = T9 * Th; + } + T1C = T1A + T1B; + T3K = T1E + T1F; + T1V = T1T + T1U; + T3x = T2o - T2p; + T3I = T1A - T1B; + T1G = T1E - T1F; + T1R = T1P - T1Q; + { + E T5W, T5X, T55, T56; + T3v = T2k + T2l; + T2m = T2k - T2l; + T2q = T2o + T2p; + T5W = T8 * Th; + T5X = Td * Tm; + T5Y = T5W - T5X; + T6u = T5W + T5X; + { + E T51, T52, T60, T61; + T51 = Tw * Th; + T52 = Ty * Tm; + T53 = T51 + T52; + T5B = T51 - T52; + T60 = T8 * Tm; + T61 = Td * Th; + T62 = T60 + T61; + T6w = T60 - T61; + } + T55 = Tw * Tm; + T56 = Ty * Th; + T57 = T55 - T56; + T5D = T55 + T56; + { + E Ti, Tq, TF, TJ, T3W, T3X, T3T, T3U, T3h, T3i, Tn, Tr, TB, TI, T3d; + E T3f, T1k, T1o, T1Z, T23, TQ, TU, T2A, T2B, T2x, T2y, T20, T24, TX, TY; + E T1i, T1n; + T2V = T1P + T1Q; + T2X = T1T - T1U; + Tg = Ta + Tf; + Ti = Tg * Th; + Tq = Tg * Tm; + TE = TC + TD; + TF = TE * Tm; + TJ = TE * Th; + T3W = T37 * Tm; + T3X = T39 * Th; + T3Y = T3W - T3X; + T3T = T37 * Th; + T3U = T39 * Tm; + T3V = T3T + T3U; + T3h = T3c * Tm; + T3i = T3e * Th; + T3j = T3h - T3i; + Tl = Tj - Tk; + Tn = Tl * Tm; + Tr = Tl * Th; + TA = Tx - Tz; + TB = TA * Th; + TI = TA * Tm; + T3d = T3c * Th; + T3f = T3e * Tm; + T3g = T3d + T3f; + T1j = Tj + Tk; + T1k = T1j * Tm; + T1o = T1j * Th; + T1t = Tx + Tz; + T1Z = T1t * Th; + T23 = T1t * Tm; + TQ = TP * Th; + TU = TT * Tm; + TV = TQ + TU; + T2A = T1a * Tm; + T2B = T1e * Th; + T2C = T2A - T2B; + T2x = T1a * Th; + T2y = T1e * Tm; + T2z = T2x + T2y; + T1u = TC - TD; + T20 = T1u * Tm; + T24 = T1u * Th; + TX = TP * Tm; + TY = TT * Th; + TZ = TX - TY; + T1h = Ta - Tf; + T1i = T1h * Th; + T1n = T1h * Tm; + To = Ti - Tn; + T1p = T1n + T1o; + T6j = TQ - TU; + T6H = T2A + T2B; + Ts = Tq + Tr; + T1l = T1i - T1k; + T6l = TX + TY; + T6F = T2x - T2y; + T2P = T1Z - T20; + T4b = TI + TJ; + T4x = T3d - T3f; + T5i = T3W + T3X; + T2R = T23 + T24; + T49 = TB - TF; + T4z = T3h + T3i; + T5g = T3T - T3U; + TG = TB + TF; + T4k = Ti + Tn; + T4m = Tq - Tr; + TK = TI - TJ; + T21 = T1Z + T20; + T3O = T1i + T1k; + T3Q = T1n - T1o; + T25 = T23 - T24; + TW = W[8]; + T10 = W[9]; + T11 = FMA(TV, TW, TZ * T10); + T79 = FNMS(T25, TW, T21 * T10); + T6X = FNMS(Td, TW, T8 * T10); + T5M = FNMS(T2X, TW, T2V * T10); + T6b = FNMS(TK, TW, TG * T10); + T1v = FMA(T1t, TW, T1u * T10); + T30 = FMA(T1h, TW, T1j * T10); + T69 = FMA(TG, TW, TK * T10); + T77 = FMA(T21, TW, T25 * T10); + T13 = FNMS(TZ, TW, TV * T10); + T2F = FNMS(T2C, TW, T2z * T10); + T2D = FMA(T2z, TW, T2C * T10); + T6p = FMA(T1a, TW, T1e * T10); + T6O = FMA(TP, TW, TT * T10); + T1x = FNMS(T1u, TW, T1t * T10); + T2a = FNMS(TE, TW, TA * T10); + T2f = FMA(T3, TW, T6 * T10); + T6V = FMA(T8, TW, Td * T10); + T28 = FMA(TA, TW, TE * T10); + T6r = FNMS(T1e, TW, T1a * T10); + T2h = FNMS(T6, TW, T3 * T10); + T6Q = FNMS(TT, TW, TP * T10); + T32 = FNMS(T1j, TW, T1h * T10); + T5K = FMA(T2V, TW, T2X * T10); + T5w = FMA(Tw, TW, Ty * T10); + T4G = FMA(T3O, TW, T3Q * T10); + T4Q = FMA(T4k, TW, T4m * T10); + T3m = FNMS(T3j, TW, T3g * T10); + T4h = FNMS(Te, TW, T9 * T10); + T4I = FNMS(T3Q, TW, T3O * T10); + T5y = FNMS(Ty, TW, Tw * T10); + T3k = FMA(T3g, TW, T3j * T10); + T4f = FMA(T9, TW, Te * T10); + T41 = FNMS(T3Y, TW, T3V * T10); + T4S = FNMS(T4m, TW, T4k * T10); + T4Y = FNMS(T3e, TW, T3c * T10); + T3q = FMA(Tg, TW, Tl * T10); + T3D = FMA(T2, TW, T5 * T10); + T3F = FNMS(T5, TW, T2 * T10); + T5r = FNMS(T39, TW, T37 * T10); + T3s = FNMS(Tl, TW, Tg * T10); + T4W = FMA(T3c, TW, T3e * T10); + T3Z = FMA(T3V, TW, T3Y * T10); + T5p = FMA(T37, TW, T39 * T10); + } + } + } + { + E T17, TdV, Tj3, Tjx, T7l, TbJ, Ti3, Tix, T1K, Tiw, TdY, ThY, T7w, Tj0, TbM; + E Tjw, T2e, TgA, T7I, TaY, TbQ, Tda, Te4, TfO, T2J, TgB, T7T, TaZ, TbT, Tdb; + E Te9, TfP, T36, T3B, TgH, TgE, TgF, TgG, T80, TbW, Tel, TfT, T8b, Tc0, T8k; + E TbX, Teg, TfS, T8h, TbZ, T45, T4q, TgJ, TgK, TgL, TgM, T8r, Tc6, Tew, TfW; + E T8C, Tc4, T8L, Tc7, Ter, TfV, T8I, Tc3, T6B, Th1, Tfm, Tga, Th8, ThI, T9N; + E Tcv, T9Y, TcH, Tav, Tcw, Tf5, Tg7, Tas, TcG, T5c, TgV, TeV, Tg0, TgS, ThD; + E T8U, Tcc, T95, Tco, T9C, Tcd, TeE, Tg3, T9z, Tcn, T5R, TgT, TeO, TeW, TgY; + E ThE, T9h, T9F, T9s, T9E, Tck, Tcq, TeJ, TeX, Tch, Tcr, T7e, Th9, Tff, Tfn; + E Th4, ThJ, Taa, Tay, Tal, Tax, TcD, TcJ, Tfa, Tfo, TcA, TcK; + { + E T1, Ti1, Tu, Ti0, TM, T7i, T15, T7j, Tp, Tt; + T1 = ri[0]; + Ti1 = ii[0]; + Tp = ri[WS(rs, 32)]; + Tt = ii[WS(rs, 32)]; + Tu = FMA(To, Tp, Ts * Tt); + Ti0 = FNMS(Ts, Tp, To * Tt); + { + E TH, TL, T12, T14; + TH = ri[WS(rs, 16)]; + TL = ii[WS(rs, 16)]; + TM = FMA(TG, TH, TK * TL); + T7i = FNMS(TK, TH, TG * TL); + T12 = ri[WS(rs, 48)]; + T14 = ii[WS(rs, 48)]; + T15 = FMA(T11, T12, T13 * T14); + T7j = FNMS(T13, T12, T11 * T14); + } + { + E Tv, T16, Tj1, Tj2; + Tv = T1 + Tu; + T16 = TM + T15; + T17 = Tv + T16; + TdV = Tv - T16; + Tj1 = Ti1 - Ti0; + Tj2 = TM - T15; + Tj3 = Tj1 - Tj2; + Tjx = Tj2 + Tj1; + } + { + E T7h, T7k, ThZ, Ti2; + T7h = T1 - Tu; + T7k = T7i - T7j; + T7l = T7h - T7k; + TbJ = T7h + T7k; + ThZ = T7i + T7j; + Ti2 = Ti0 + Ti1; + Ti3 = ThZ + Ti2; + Tix = Ti2 - ThZ; + } + } + { + E T1g, T7m, T1r, T7n, T7o, T7p, T1z, T7s, T1I, T7t, T7r, T7u; + { + E T1b, T1f, T1m, T1q; + T1b = ri[WS(rs, 8)]; + T1f = ii[WS(rs, 8)]; + T1g = FMA(T1a, T1b, T1e * T1f); + T7m = FNMS(T1e, T1b, T1a * T1f); + T1m = ri[WS(rs, 40)]; + T1q = ii[WS(rs, 40)]; + T1r = FMA(T1l, T1m, T1p * T1q); + T7n = FNMS(T1p, T1m, T1l * T1q); + } + T7o = T7m - T7n; + T7p = T1g - T1r; + { + E T1w, T1y, T1D, T1H; + T1w = ri[WS(rs, 56)]; + T1y = ii[WS(rs, 56)]; + T1z = FMA(T1v, T1w, T1x * T1y); + T7s = FNMS(T1x, T1w, T1v * T1y); + T1D = ri[WS(rs, 24)]; + T1H = ii[WS(rs, 24)]; + T1I = FMA(T1C, T1D, T1G * T1H); + T7t = FNMS(T1G, T1D, T1C * T1H); + } + T7r = T1z - T1I; + T7u = T7s - T7t; + { + E T1s, T1J, TdW, TdX; + T1s = T1g + T1r; + T1J = T1z + T1I; + T1K = T1s + T1J; + Tiw = T1J - T1s; + TdW = T7m + T7n; + TdX = T7s + T7t; + TdY = TdW - TdX; + ThY = TdW + TdX; + } + { + E T7q, T7v, TbK, TbL; + T7q = T7o - T7p; + T7v = T7r + T7u; + T7w = KP707106781 * (T7q - T7v); + Tj0 = KP707106781 * (T7q + T7v); + TbK = T7p + T7o; + TbL = T7r - T7u; + TbM = KP707106781 * (TbK + TbL); + Tjw = KP707106781 * (TbL - TbK); + } + } + { + E T1Y, Te0, T7A, T7D, T2d, Te1, T7B, T7G, T7C, T7H; + { + E T1O, T7y, T1X, T7z; + { + E T1M, T1N, T1S, T1W; + T1M = ri[WS(rs, 4)]; + T1N = ii[WS(rs, 4)]; + T1O = FMA(T8, T1M, Td * T1N); + T7y = FNMS(Td, T1M, T8 * T1N); + T1S = ri[WS(rs, 36)]; + T1W = ii[WS(rs, 36)]; + T1X = FMA(T1R, T1S, T1V * T1W); + T7z = FNMS(T1V, T1S, T1R * T1W); + } + T1Y = T1O + T1X; + Te0 = T7y + T7z; + T7A = T7y - T7z; + T7D = T1O - T1X; + } + { + E T27, T7E, T2c, T7F; + { + E T22, T26, T29, T2b; + T22 = ri[WS(rs, 20)]; + T26 = ii[WS(rs, 20)]; + T27 = FMA(T21, T22, T25 * T26); + T7E = FNMS(T25, T22, T21 * T26); + T29 = ri[WS(rs, 52)]; + T2b = ii[WS(rs, 52)]; + T2c = FMA(T28, T29, T2a * T2b); + T7F = FNMS(T2a, T29, T28 * T2b); + } + T2d = T27 + T2c; + Te1 = T7E + T7F; + T7B = T27 - T2c; + T7G = T7E - T7F; + } + T2e = T1Y + T2d; + TgA = Te0 + Te1; + T7C = T7A + T7B; + T7H = T7D - T7G; + T7I = FNMS(KP923879532, T7H, KP382683432 * T7C); + TaY = FMA(KP923879532, T7C, KP382683432 * T7H); + { + E TbO, TbP, Te2, Te3; + TbO = T7A - T7B; + TbP = T7D + T7G; + TbQ = FNMS(KP382683432, TbP, KP923879532 * TbO); + Tda = FMA(KP382683432, TbO, KP923879532 * TbP); + Te2 = Te0 - Te1; + Te3 = T1Y - T2d; + Te4 = Te2 - Te3; + TfO = Te3 + Te2; + } + } + { + E T2t, Te6, T7L, T7O, T2I, Te7, T7M, T7R, T7N, T7S; + { + E T2j, T7J, T2s, T7K; + { + E T2g, T2i, T2n, T2r; + T2g = ri[WS(rs, 60)]; + T2i = ii[WS(rs, 60)]; + T2j = FMA(T2f, T2g, T2h * T2i); + T7J = FNMS(T2h, T2g, T2f * T2i); + T2n = ri[WS(rs, 28)]; + T2r = ii[WS(rs, 28)]; + T2s = FMA(T2m, T2n, T2q * T2r); + T7K = FNMS(T2q, T2n, T2m * T2r); + } + T2t = T2j + T2s; + Te6 = T7J + T7K; + T7L = T7J - T7K; + T7O = T2j - T2s; + } + { + E T2w, T7P, T2H, T7Q; + { + E T2u, T2v, T2E, T2G; + T2u = ri[WS(rs, 12)]; + T2v = ii[WS(rs, 12)]; + T2w = FMA(TP, T2u, TT * T2v); + T7P = FNMS(TT, T2u, TP * T2v); + T2E = ri[WS(rs, 44)]; + T2G = ii[WS(rs, 44)]; + T2H = FMA(T2D, T2E, T2F * T2G); + T7Q = FNMS(T2F, T2E, T2D * T2G); + } + T2I = T2w + T2H; + Te7 = T7P + T7Q; + T7M = T2w - T2H; + T7R = T7P - T7Q; + } + T2J = T2t + T2I; + TgB = Te6 + Te7; + T7N = T7L + T7M; + T7S = T7O - T7R; + T7T = FMA(KP382683432, T7N, KP923879532 * T7S); + TaZ = FNMS(KP923879532, T7N, KP382683432 * T7S); + { + E TbR, TbS, Te5, Te8; + TbR = T7L - T7M; + TbS = T7O + T7R; + TbT = FMA(KP923879532, TbR, KP382683432 * TbS); + Tdb = FNMS(KP382683432, TbR, KP923879532 * TbS); + Te5 = T2t - T2I; + Te8 = Te6 - Te7; + Te9 = Te5 + Te8; + TfP = Te5 - Te8; + } + } + { + E T2O, T7W, T2T, T7X, T2U, Tec, T2Z, T8e, T34, T8f, T35, Ted, T3p, Tei, T86; + E T89, T3A, Tej, T81, T84; + { + E T2M, T2N, T2Q, T2S; + T2M = ri[WS(rs, 2)]; + T2N = ii[WS(rs, 2)]; + T2O = FMA(Tw, T2M, Ty * T2N); + T7W = FNMS(Ty, T2M, Tw * T2N); + T2Q = ri[WS(rs, 34)]; + T2S = ii[WS(rs, 34)]; + T2T = FMA(T2P, T2Q, T2R * T2S); + T7X = FNMS(T2R, T2Q, T2P * T2S); + } + T2U = T2O + T2T; + Tec = T7W + T7X; + { + E T2W, T2Y, T31, T33; + T2W = ri[WS(rs, 18)]; + T2Y = ii[WS(rs, 18)]; + T2Z = FMA(T2V, T2W, T2X * T2Y); + T8e = FNMS(T2X, T2W, T2V * T2Y); + T31 = ri[WS(rs, 50)]; + T33 = ii[WS(rs, 50)]; + T34 = FMA(T30, T31, T32 * T33); + T8f = FNMS(T32, T31, T30 * T33); + } + T35 = T2Z + T34; + Ted = T8e + T8f; + { + E T3b, T87, T3o, T88; + { + E T38, T3a, T3l, T3n; + T38 = ri[WS(rs, 10)]; + T3a = ii[WS(rs, 10)]; + T3b = FMA(T37, T38, T39 * T3a); + T87 = FNMS(T39, T38, T37 * T3a); + T3l = ri[WS(rs, 42)]; + T3n = ii[WS(rs, 42)]; + T3o = FMA(T3k, T3l, T3m * T3n); + T88 = FNMS(T3m, T3l, T3k * T3n); + } + T3p = T3b + T3o; + Tei = T87 + T88; + T86 = T3b - T3o; + T89 = T87 - T88; + } + { + E T3u, T82, T3z, T83; + { + E T3r, T3t, T3w, T3y; + T3r = ri[WS(rs, 58)]; + T3t = ii[WS(rs, 58)]; + T3u = FMA(T3q, T3r, T3s * T3t); + T82 = FNMS(T3s, T3r, T3q * T3t); + T3w = ri[WS(rs, 26)]; + T3y = ii[WS(rs, 26)]; + T3z = FMA(T3v, T3w, T3x * T3y); + T83 = FNMS(T3x, T3w, T3v * T3y); + } + T3A = T3u + T3z; + Tej = T82 + T83; + T81 = T3u - T3z; + T84 = T82 - T83; + } + T36 = T2U + T35; + T3B = T3p + T3A; + TgH = T36 - T3B; + TgE = Tec + Ted; + TgF = Tei + Tej; + TgG = TgE - TgF; + { + E T7Y, T7Z, Teh, Tek; + T7Y = T7W - T7X; + T7Z = T2Z - T34; + T80 = T7Y + T7Z; + TbW = T7Y - T7Z; + Teh = T2U - T35; + Tek = Tei - Tej; + Tel = Teh - Tek; + TfT = Teh + Tek; + } + { + E T85, T8a, T8i, T8j; + T85 = T81 - T84; + T8a = T86 + T89; + T8b = KP707106781 * (T85 - T8a); + Tc0 = KP707106781 * (T8a + T85); + T8i = T89 - T86; + T8j = T81 + T84; + T8k = KP707106781 * (T8i - T8j); + TbX = KP707106781 * (T8i + T8j); + } + { + E Tee, Tef, T8d, T8g; + Tee = Tec - Ted; + Tef = T3A - T3p; + Teg = Tee - Tef; + TfS = Tee + Tef; + T8d = T2O - T2T; + T8g = T8e - T8f; + T8h = T8d - T8g; + TbZ = T8d + T8g; + } + } + { + E T3H, T8n, T3M, T8o, T3N, Ten, T3S, T8F, T43, T8G, T44, Teo, T4e, Tet, T8x; + E T8A, T4p, Teu, T8s, T8v; + { + E T3E, T3G, T3J, T3L; + T3E = ri[WS(rs, 62)]; + T3G = ii[WS(rs, 62)]; + T3H = FMA(T3D, T3E, T3F * T3G); + T8n = FNMS(T3F, T3E, T3D * T3G); + T3J = ri[WS(rs, 30)]; + T3L = ii[WS(rs, 30)]; + T3M = FMA(T3I, T3J, T3K * T3L); + T8o = FNMS(T3K, T3J, T3I * T3L); + } + T3N = T3H + T3M; + Ten = T8n + T8o; + { + E T3P, T3R, T40, T42; + T3P = ri[WS(rs, 14)]; + T3R = ii[WS(rs, 14)]; + T3S = FMA(T3O, T3P, T3Q * T3R); + T8F = FNMS(T3Q, T3P, T3O * T3R); + T40 = ri[WS(rs, 46)]; + T42 = ii[WS(rs, 46)]; + T43 = FMA(T3Z, T40, T41 * T42); + T8G = FNMS(T41, T40, T3Z * T42); + } + T44 = T3S + T43; + Teo = T8F + T8G; + { + E T48, T8y, T4d, T8z; + { + E T46, T47, T4a, T4c; + T46 = ri[WS(rs, 6)]; + T47 = ii[WS(rs, 6)]; + T48 = FMA(T3c, T46, T3e * T47); + T8y = FNMS(T3e, T46, T3c * T47); + T4a = ri[WS(rs, 38)]; + T4c = ii[WS(rs, 38)]; + T4d = FMA(T49, T4a, T4b * T4c); + T8z = FNMS(T4b, T4a, T49 * T4c); + } + T4e = T48 + T4d; + Tet = T8y + T8z; + T8x = T48 - T4d; + T8A = T8y - T8z; + } + { + E T4j, T8t, T4o, T8u; + { + E T4g, T4i, T4l, T4n; + T4g = ri[WS(rs, 54)]; + T4i = ii[WS(rs, 54)]; + T4j = FMA(T4f, T4g, T4h * T4i); + T8t = FNMS(T4h, T4g, T4f * T4i); + T4l = ri[WS(rs, 22)]; + T4n = ii[WS(rs, 22)]; + T4o = FMA(T4k, T4l, T4m * T4n); + T8u = FNMS(T4m, T4l, T4k * T4n); + } + T4p = T4j + T4o; + Teu = T8t + T8u; + T8s = T4j - T4o; + T8v = T8t - T8u; + } + T45 = T3N + T44; + T4q = T4e + T4p; + TgJ = T45 - T4q; + TgK = Ten + Teo; + TgL = Tet + Teu; + TgM = TgK - TgL; + { + E T8p, T8q, Tes, Tev; + T8p = T8n - T8o; + T8q = T3S - T43; + T8r = T8p + T8q; + Tc6 = T8p - T8q; + Tes = T3N - T44; + Tev = Tet - Teu; + Tew = Tes - Tev; + TfW = Tes + Tev; + } + { + E T8w, T8B, T8J, T8K; + T8w = T8s - T8v; + T8B = T8x + T8A; + T8C = KP707106781 * (T8w - T8B); + Tc4 = KP707106781 * (T8B + T8w); + T8J = T8A - T8x; + T8K = T8s + T8v; + T8L = KP707106781 * (T8J - T8K); + Tc7 = KP707106781 * (T8J + T8K); + } + { + E Tep, Teq, T8E, T8H; + Tep = Ten - Teo; + Teq = T4p - T4e; + Ter = Tep - Teq; + TfV = Tep + Teq; + T8E = T3H - T3M; + T8H = T8F - T8G; + T8I = T8E - T8H; + Tc3 = T8E + T8H; + } + } + { + E T5V, Tao, T64, Tap, T65, Tfi, T68, T9K, T6d, T9L, T6e, Tfj, T6o, Tf2, T9Q; + E T9R, T6z, Tf3, T9T, T9W; + { + E T5T, T5U, T5Z, T63; + T5T = ri[WS(rs, 63)]; + T5U = ii[WS(rs, 63)]; + T5V = FMA(TW, T5T, T10 * T5U); + Tao = FNMS(T10, T5T, TW * T5U); + T5Z = ri[WS(rs, 31)]; + T63 = ii[WS(rs, 31)]; + T64 = FMA(T5Y, T5Z, T62 * T63); + Tap = FNMS(T62, T5Z, T5Y * T63); + } + T65 = T5V + T64; + Tfi = Tao + Tap; + { + E T66, T67, T6a, T6c; + T66 = ri[WS(rs, 15)]; + T67 = ii[WS(rs, 15)]; + T68 = FMA(TV, T66, TZ * T67); + T9K = FNMS(TZ, T66, TV * T67); + T6a = ri[WS(rs, 47)]; + T6c = ii[WS(rs, 47)]; + T6d = FMA(T69, T6a, T6b * T6c); + T9L = FNMS(T6b, T6a, T69 * T6c); + } + T6e = T68 + T6d; + Tfj = T9K + T9L; + { + E T6i, T9O, T6n, T9P; + { + E T6g, T6h, T6k, T6m; + T6g = ri[WS(rs, 7)]; + T6h = ii[WS(rs, 7)]; + T6i = FMA(T1t, T6g, T1u * T6h); + T9O = FNMS(T1u, T6g, T1t * T6h); + T6k = ri[WS(rs, 39)]; + T6m = ii[WS(rs, 39)]; + T6n = FMA(T6j, T6k, T6l * T6m); + T9P = FNMS(T6l, T6k, T6j * T6m); + } + T6o = T6i + T6n; + Tf2 = T9O + T9P; + T9Q = T9O - T9P; + T9R = T6i - T6n; + } + { + E T6t, T9U, T6y, T9V; + { + E T6q, T6s, T6v, T6x; + T6q = ri[WS(rs, 55)]; + T6s = ii[WS(rs, 55)]; + T6t = FMA(T6p, T6q, T6r * T6s); + T9U = FNMS(T6r, T6q, T6p * T6s); + T6v = ri[WS(rs, 23)]; + T6x = ii[WS(rs, 23)]; + T6y = FMA(T6u, T6v, T6w * T6x); + T9V = FNMS(T6w, T6v, T6u * T6x); + } + T6z = T6t + T6y; + Tf3 = T9U + T9V; + T9T = T6t - T6y; + T9W = T9U - T9V; + } + { + E T6f, T6A, Tfk, Tfl; + T6f = T65 + T6e; + T6A = T6o + T6z; + T6B = T6f + T6A; + Th1 = T6f - T6A; + Tfk = Tfi - Tfj; + Tfl = T6z - T6o; + Tfm = Tfk - Tfl; + Tga = Tfk + Tfl; + } + { + E Th6, Th7, T9J, T9M; + Th6 = Tfi + Tfj; + Th7 = Tf2 + Tf3; + Th8 = Th6 - Th7; + ThI = Th6 + Th7; + T9J = T5V - T64; + T9M = T9K - T9L; + T9N = T9J - T9M; + Tcv = T9J + T9M; + } + { + E T9S, T9X, Tat, Tau; + T9S = T9Q - T9R; + T9X = T9T + T9W; + T9Y = KP707106781 * (T9S - T9X); + TcH = KP707106781 * (T9S + T9X); + Tat = T9T - T9W; + Tau = T9R + T9Q; + Tav = KP707106781 * (Tat - Tau); + Tcw = KP707106781 * (Tau + Tat); + } + { + E Tf1, Tf4, Taq, Tar; + Tf1 = T65 - T6e; + Tf4 = Tf2 - Tf3; + Tf5 = Tf1 - Tf4; + Tg7 = Tf1 + Tf4; + Taq = Tao - Tap; + Tar = T68 - T6d; + Tas = Taq + Tar; + TcG = Taq - Tar; + } + } + { + E T4w, T8Q, T4B, T8R, T4C, TeA, T4F, T9w, T4K, T9x, T4L, TeB, T4V, TeS, T90; + E T93, T5a, TeT, T8V, T8Y; + { + E T4u, T4v, T4y, T4A; + T4u = ri[WS(rs, 1)]; + T4v = ii[WS(rs, 1)]; + T4w = FMA(T2, T4u, T5 * T4v); + T8Q = FNMS(T5, T4u, T2 * T4v); + T4y = ri[WS(rs, 33)]; + T4A = ii[WS(rs, 33)]; + T4B = FMA(T4x, T4y, T4z * T4A); + T8R = FNMS(T4z, T4y, T4x * T4A); + } + T4C = T4w + T4B; + TeA = T8Q + T8R; + { + E T4D, T4E, T4H, T4J; + T4D = ri[WS(rs, 17)]; + T4E = ii[WS(rs, 17)]; + T4F = FMA(T3V, T4D, T3Y * T4E); + T9w = FNMS(T3Y, T4D, T3V * T4E); + T4H = ri[WS(rs, 49)]; + T4J = ii[WS(rs, 49)]; + T4K = FMA(T4G, T4H, T4I * T4J); + T9x = FNMS(T4I, T4H, T4G * T4J); + } + T4L = T4F + T4K; + TeB = T9w + T9x; + { + E T4P, T91, T4U, T92; + { + E T4N, T4O, T4R, T4T; + T4N = ri[WS(rs, 9)]; + T4O = ii[WS(rs, 9)]; + T4P = FMA(T9, T4N, Te * T4O); + T91 = FNMS(Te, T4N, T9 * T4O); + T4R = ri[WS(rs, 41)]; + T4T = ii[WS(rs, 41)]; + T4U = FMA(T4Q, T4R, T4S * T4T); + T92 = FNMS(T4S, T4R, T4Q * T4T); + } + T4V = T4P + T4U; + TeS = T91 + T92; + T90 = T4P - T4U; + T93 = T91 - T92; + } + { + E T50, T8W, T59, T8X; + { + E T4X, T4Z, T54, T58; + T4X = ri[WS(rs, 57)]; + T4Z = ii[WS(rs, 57)]; + T50 = FMA(T4W, T4X, T4Y * T4Z); + T8W = FNMS(T4Y, T4X, T4W * T4Z); + T54 = ri[WS(rs, 25)]; + T58 = ii[WS(rs, 25)]; + T59 = FMA(T53, T54, T57 * T58); + T8X = FNMS(T57, T54, T53 * T58); + } + T5a = T50 + T59; + TeT = T8W + T8X; + T8V = T50 - T59; + T8Y = T8W - T8X; + } + { + E T4M, T5b, TeR, TeU; + T4M = T4C + T4L; + T5b = T4V + T5a; + T5c = T4M + T5b; + TgV = T4M - T5b; + TeR = T4C - T4L; + TeU = TeS - TeT; + TeV = TeR - TeU; + Tg0 = TeR + TeU; + } + { + E TgQ, TgR, T8S, T8T; + TgQ = TeA + TeB; + TgR = TeS + TeT; + TgS = TgQ - TgR; + ThD = TgQ + TgR; + T8S = T8Q - T8R; + T8T = T4F - T4K; + T8U = T8S + T8T; + Tcc = T8S - T8T; + } + { + E T8Z, T94, T9A, T9B; + T8Z = T8V - T8Y; + T94 = T90 + T93; + T95 = KP707106781 * (T8Z - T94); + Tco = KP707106781 * (T94 + T8Z); + T9A = T93 - T90; + T9B = T8V + T8Y; + T9C = KP707106781 * (T9A - T9B); + Tcd = KP707106781 * (T9A + T9B); + } + { + E TeC, TeD, T9v, T9y; + TeC = TeA - TeB; + TeD = T5a - T4V; + TeE = TeC - TeD; + Tg3 = TeC + TeD; + T9v = T4w - T4B; + T9y = T9w - T9x; + T9z = T9v - T9y; + Tcn = T9v + T9y; + } + } + { + E T5l, TeL, T9k, T9n, T5P, TeH, T9a, T9f, T5u, TeM, T9l, T9q, T5G, TeG, T97; + E T9e; + { + E T5f, T9i, T5k, T9j; + { + E T5d, T5e, T5h, T5j; + T5d = ri[WS(rs, 5)]; + T5e = ii[WS(rs, 5)]; + T5f = FMA(Tg, T5d, Tl * T5e); + T9i = FNMS(Tl, T5d, Tg * T5e); + T5h = ri[WS(rs, 37)]; + T5j = ii[WS(rs, 37)]; + T5k = FMA(T5g, T5h, T5i * T5j); + T9j = FNMS(T5i, T5h, T5g * T5j); + } + T5l = T5f + T5k; + TeL = T9i + T9j; + T9k = T9i - T9j; + T9n = T5f - T5k; + } + { + E T5J, T98, T5O, T99; + { + E T5H, T5I, T5L, T5N; + T5H = ri[WS(rs, 13)]; + T5I = ii[WS(rs, 13)]; + T5J = FMA(T1h, T5H, T1j * T5I); + T98 = FNMS(T1j, T5H, T1h * T5I); + T5L = ri[WS(rs, 45)]; + T5N = ii[WS(rs, 45)]; + T5O = FMA(T5K, T5L, T5M * T5N); + T99 = FNMS(T5M, T5L, T5K * T5N); + } + T5P = T5J + T5O; + TeH = T98 + T99; + T9a = T98 - T99; + T9f = T5J - T5O; + } + { + E T5o, T9o, T5t, T9p; + { + E T5m, T5n, T5q, T5s; + T5m = ri[WS(rs, 21)]; + T5n = ii[WS(rs, 21)]; + T5o = FMA(T3g, T5m, T3j * T5n); + T9o = FNMS(T3j, T5m, T3g * T5n); + T5q = ri[WS(rs, 53)]; + T5s = ii[WS(rs, 53)]; + T5t = FMA(T5p, T5q, T5r * T5s); + T9p = FNMS(T5r, T5q, T5p * T5s); + } + T5u = T5o + T5t; + TeM = T9o + T9p; + T9l = T5o - T5t; + T9q = T9o - T9p; + } + { + E T5A, T9c, T5F, T9d; + { + E T5x, T5z, T5C, T5E; + T5x = ri[WS(rs, 61)]; + T5z = ii[WS(rs, 61)]; + T5A = FMA(T5w, T5x, T5y * T5z); + T9c = FNMS(T5y, T5x, T5w * T5z); + T5C = ri[WS(rs, 29)]; + T5E = ii[WS(rs, 29)]; + T5F = FMA(T5B, T5C, T5D * T5E); + T9d = FNMS(T5D, T5C, T5B * T5E); + } + T5G = T5A + T5F; + TeG = T9c + T9d; + T97 = T5A - T5F; + T9e = T9c - T9d; + } + { + E T5v, T5Q, TeK, TeN; + T5v = T5l + T5u; + T5Q = T5G + T5P; + T5R = T5v + T5Q; + TgT = T5Q - T5v; + TeK = T5l - T5u; + TeN = TeL - TeM; + TeO = TeK + TeN; + TeW = TeN - TeK; + } + { + E TgW, TgX, T9b, T9g; + TgW = TeL + TeM; + TgX = TeG + TeH; + TgY = TgW - TgX; + ThE = TgW + TgX; + T9b = T97 - T9a; + T9g = T9e + T9f; + T9h = FNMS(KP923879532, T9g, KP382683432 * T9b); + T9F = FMA(KP382683432, T9g, KP923879532 * T9b); + } + { + E T9m, T9r, Tci, Tcj; + T9m = T9k + T9l; + T9r = T9n - T9q; + T9s = FMA(KP923879532, T9m, KP382683432 * T9r); + T9E = FNMS(KP923879532, T9r, KP382683432 * T9m); + Tci = T9k - T9l; + Tcj = T9n + T9q; + Tck = FMA(KP382683432, Tci, KP923879532 * Tcj); + Tcq = FNMS(KP382683432, Tcj, KP923879532 * Tci); + } + { + E TeF, TeI, Tcf, Tcg; + TeF = T5G - T5P; + TeI = TeG - TeH; + TeJ = TeF - TeI; + TeX = TeF + TeI; + Tcf = T97 + T9a; + Tcg = T9e - T9f; + Tch = FNMS(KP382683432, Tcg, KP923879532 * Tcf); + Tcr = FMA(KP923879532, Tcg, KP382683432 * Tcf); + } + } + { + E T6K, Tf6, Ta2, Ta5, T7c, Tfd, Tae, Taj, T6T, Tf7, Ta3, Ta8, T73, Tfc, Tad; + E Tag; + { + E T6E, Ta0, T6J, Ta1; + { + E T6C, T6D, T6G, T6I; + T6C = ri[WS(rs, 3)]; + T6D = ii[WS(rs, 3)]; + T6E = FMA(T3, T6C, T6 * T6D); + Ta0 = FNMS(T6, T6C, T3 * T6D); + T6G = ri[WS(rs, 35)]; + T6I = ii[WS(rs, 35)]; + T6J = FMA(T6F, T6G, T6H * T6I); + Ta1 = FNMS(T6H, T6G, T6F * T6I); + } + T6K = T6E + T6J; + Tf6 = Ta0 + Ta1; + Ta2 = Ta0 - Ta1; + Ta5 = T6E - T6J; + } + { + E T76, Tah, T7b, Tai; + { + E T74, T75, T78, T7a; + T74 = ri[WS(rs, 11)]; + T75 = ii[WS(rs, 11)]; + T76 = FMA(TA, T74, TE * T75); + Tah = FNMS(TE, T74, TA * T75); + T78 = ri[WS(rs, 43)]; + T7a = ii[WS(rs, 43)]; + T7b = FMA(T77, T78, T79 * T7a); + Tai = FNMS(T79, T78, T77 * T7a); + } + T7c = T76 + T7b; + Tfd = Tah + Tai; + Tae = T76 - T7b; + Taj = Tah - Tai; + } + { + E T6N, Ta6, T6S, Ta7; + { + E T6L, T6M, T6P, T6R; + T6L = ri[WS(rs, 19)]; + T6M = ii[WS(rs, 19)]; + T6N = FMA(T2z, T6L, T2C * T6M); + Ta6 = FNMS(T2C, T6L, T2z * T6M); + T6P = ri[WS(rs, 51)]; + T6R = ii[WS(rs, 51)]; + T6S = FMA(T6O, T6P, T6Q * T6R); + Ta7 = FNMS(T6Q, T6P, T6O * T6R); + } + T6T = T6N + T6S; + Tf7 = Ta6 + Ta7; + Ta3 = T6N - T6S; + Ta8 = Ta6 - Ta7; + } + { + E T6Z, Tab, T72, Tac; + { + E T6W, T6Y, T70, T71; + T6W = ri[WS(rs, 59)]; + T6Y = ii[WS(rs, 59)]; + T6Z = FMA(T6V, T6W, T6X * T6Y); + Tab = FNMS(T6X, T6W, T6V * T6Y); + T70 = ri[WS(rs, 27)]; + T71 = ii[WS(rs, 27)]; + T72 = FMA(Th, T70, Tm * T71); + Tac = FNMS(Tm, T70, Th * T71); + } + T73 = T6Z + T72; + Tfc = Tab + Tac; + Tad = Tab - Tac; + Tag = T6Z - T72; + } + { + E T6U, T7d, Tfb, Tfe; + T6U = T6K + T6T; + T7d = T73 + T7c; + T7e = T6U + T7d; + Th9 = T7d - T6U; + Tfb = T73 - T7c; + Tfe = Tfc - Tfd; + Tff = Tfb + Tfe; + Tfn = Tfb - Tfe; + } + { + E Th2, Th3, Ta4, Ta9; + Th2 = Tf6 + Tf7; + Th3 = Tfc + Tfd; + Th4 = Th2 - Th3; + ThJ = Th2 + Th3; + Ta4 = Ta2 + Ta3; + Ta9 = Ta5 - Ta8; + Taa = FNMS(KP923879532, Ta9, KP382683432 * Ta4); + Tay = FMA(KP923879532, Ta4, KP382683432 * Ta9); + } + { + E Taf, Tak, TcB, TcC; + Taf = Tad + Tae; + Tak = Tag - Taj; + Tal = FMA(KP382683432, Taf, KP923879532 * Tak); + Tax = FNMS(KP923879532, Taf, KP382683432 * Tak); + TcB = Tad - Tae; + TcC = Tag + Taj; + TcD = FMA(KP923879532, TcB, KP382683432 * TcC); + TcJ = FNMS(KP382683432, TcB, KP923879532 * TcC); + } + { + E Tf8, Tf9, Tcy, Tcz; + Tf8 = Tf6 - Tf7; + Tf9 = T6K - T6T; + Tfa = Tf8 - Tf9; + Tfo = Tf9 + Tf8; + Tcy = Ta2 - Ta3; + Tcz = Ta5 + Ta8; + TcA = FNMS(KP382683432, Tcz, KP923879532 * Tcy); + TcK = FMA(KP382683432, Tcy, KP923879532 * Tcz); + } + } + { + E T2L, Thx, ThU, ThV, Ti5, Tib, T4s, Tia, T7g, Ti7, ThG, ThO, ThL, ThP, ThA; + E ThW; + { + E T1L, T2K, ThS, ThT; + T1L = T17 + T1K; + T2K = T2e + T2J; + T2L = T1L + T2K; + Thx = T1L - T2K; + ThS = ThD + ThE; + ThT = ThI + ThJ; + ThU = ThS - ThT; + ThV = ThS + ThT; + } + { + E ThX, Ti4, T3C, T4r; + ThX = TgA + TgB; + Ti4 = ThY + Ti3; + Ti5 = ThX + Ti4; + Tib = Ti4 - ThX; + T3C = T36 + T3B; + T4r = T45 + T4q; + T4s = T3C + T4r; + Tia = T4r - T3C; + } + { + E T5S, T7f, ThC, ThF; + T5S = T5c + T5R; + T7f = T6B + T7e; + T7g = T5S + T7f; + Ti7 = T7f - T5S; + ThC = T5c - T5R; + ThF = ThD - ThE; + ThG = ThC + ThF; + ThO = ThF - ThC; + } + { + E ThH, ThK, Thy, Thz; + ThH = T6B - T7e; + ThK = ThI - ThJ; + ThL = ThH - ThK; + ThP = ThH + ThK; + Thy = TgE + TgF; + Thz = TgK + TgL; + ThA = Thy - Thz; + ThW = Thy + Thz; + } + { + E T4t, Ti6, ThR, Ti8; + T4t = T2L + T4s; + ri[WS(rs, 32)] = T4t - T7g; + ri[0] = T4t + T7g; + Ti6 = ThW + Ti5; + ii[0] = ThV + Ti6; + ii[WS(rs, 32)] = Ti6 - ThV; + ThR = T2L - T4s; + ri[WS(rs, 48)] = ThR - ThU; + ri[WS(rs, 16)] = ThR + ThU; + Ti8 = Ti5 - ThW; + ii[WS(rs, 16)] = Ti7 + Ti8; + ii[WS(rs, 48)] = Ti8 - Ti7; + } + { + E ThB, ThM, Ti9, Tic; + ThB = Thx + ThA; + ThM = KP707106781 * (ThG + ThL); + ri[WS(rs, 40)] = ThB - ThM; + ri[WS(rs, 8)] = ThB + ThM; + Ti9 = KP707106781 * (ThO + ThP); + Tic = Tia + Tib; + ii[WS(rs, 8)] = Ti9 + Tic; + ii[WS(rs, 40)] = Tic - Ti9; + } + { + E ThN, ThQ, Tid, Tie; + ThN = Thx - ThA; + ThQ = KP707106781 * (ThO - ThP); + ri[WS(rs, 56)] = ThN - ThQ; + ri[WS(rs, 24)] = ThN + ThQ; + Tid = KP707106781 * (ThL - ThG); + Tie = Tib - Tia; + ii[WS(rs, 24)] = Tid + Tie; + ii[WS(rs, 56)] = Tie - Tid; + } + } + { + E TgD, Thh, Thr, Thv, Tij, Tip, TgO, Tig, Th0, The, Thk, Tio, Tho, Thu, Thb; + E Thf; + { + E Tgz, TgC, Thp, Thq; + Tgz = T17 - T1K; + TgC = TgA - TgB; + TgD = Tgz - TgC; + Thh = Tgz + TgC; + Thp = Th1 + Th4; + Thq = Th8 + Th9; + Thr = FNMS(KP382683432, Thq, KP923879532 * Thp); + Thv = FMA(KP923879532, Thq, KP382683432 * Thp); + } + { + E Tih, Tii, TgI, TgN; + Tih = T2J - T2e; + Tii = Ti3 - ThY; + Tij = Tih + Tii; + Tip = Tii - Tih; + TgI = TgG - TgH; + TgN = TgJ + TgM; + TgO = KP707106781 * (TgI - TgN); + Tig = KP707106781 * (TgI + TgN); + } + { + E TgU, TgZ, Thi, Thj; + TgU = TgS - TgT; + TgZ = TgV - TgY; + Th0 = FMA(KP923879532, TgU, KP382683432 * TgZ); + The = FNMS(KP923879532, TgZ, KP382683432 * TgU); + Thi = TgH + TgG; + Thj = TgJ - TgM; + Thk = KP707106781 * (Thi + Thj); + Tio = KP707106781 * (Thj - Thi); + } + { + E Thm, Thn, Th5, Tha; + Thm = TgS + TgT; + Thn = TgV + TgY; + Tho = FMA(KP382683432, Thm, KP923879532 * Thn); + Thu = FNMS(KP382683432, Thn, KP923879532 * Thm); + Th5 = Th1 - Th4; + Tha = Th8 - Th9; + Thb = FNMS(KP923879532, Tha, KP382683432 * Th5); + Thf = FMA(KP382683432, Tha, KP923879532 * Th5); + } + { + E TgP, Thc, Tin, Tiq; + TgP = TgD + TgO; + Thc = Th0 + Thb; + ri[WS(rs, 44)] = TgP - Thc; + ri[WS(rs, 12)] = TgP + Thc; + Tin = The + Thf; + Tiq = Tio + Tip; + ii[WS(rs, 12)] = Tin + Tiq; + ii[WS(rs, 44)] = Tiq - Tin; + } + { + E Thd, Thg, Tir, Tis; + Thd = TgD - TgO; + Thg = The - Thf; + ri[WS(rs, 60)] = Thd - Thg; + ri[WS(rs, 28)] = Thd + Thg; + Tir = Thb - Th0; + Tis = Tip - Tio; + ii[WS(rs, 28)] = Tir + Tis; + ii[WS(rs, 60)] = Tis - Tir; + } + { + E Thl, Ths, Tif, Tik; + Thl = Thh + Thk; + Ths = Tho + Thr; + ri[WS(rs, 36)] = Thl - Ths; + ri[WS(rs, 4)] = Thl + Ths; + Tif = Thu + Thv; + Tik = Tig + Tij; + ii[WS(rs, 4)] = Tif + Tik; + ii[WS(rs, 36)] = Tik - Tif; + } + { + E Tht, Thw, Til, Tim; + Tht = Thh - Thk; + Thw = Thu - Thv; + ri[WS(rs, 52)] = Tht - Thw; + ri[WS(rs, 20)] = Tht + Thw; + Til = Thr - Tho; + Tim = Tij - Tig; + ii[WS(rs, 20)] = Til + Tim; + ii[WS(rs, 52)] = Tim - Til; + } + } + { + E Teb, Tfx, Tey, TiK, TiN, TiT, TfA, TiS, Tfr, TfL, Tfv, TfH, Tf0, TfK, Tfu; + E TfE; + { + E TdZ, Tea, Tfy, Tfz; + TdZ = TdV - TdY; + Tea = KP707106781 * (Te4 - Te9); + Teb = TdZ - Tea; + Tfx = TdZ + Tea; + { + E Tem, Tex, TiL, TiM; + Tem = FNMS(KP923879532, Tel, KP382683432 * Teg); + Tex = FMA(KP382683432, Ter, KP923879532 * Tew); + Tey = Tem - Tex; + TiK = Tem + Tex; + TiL = KP707106781 * (TfP - TfO); + TiM = Tix - Tiw; + TiN = TiL + TiM; + TiT = TiM - TiL; + } + Tfy = FMA(KP923879532, Teg, KP382683432 * Tel); + Tfz = FNMS(KP923879532, Ter, KP382683432 * Tew); + TfA = Tfy + Tfz; + TiS = Tfz - Tfy; + { + E Tfh, TfF, Tfq, TfG, Tfg, Tfp; + Tfg = KP707106781 * (Tfa - Tff); + Tfh = Tf5 - Tfg; + TfF = Tf5 + Tfg; + Tfp = KP707106781 * (Tfn - Tfo); + Tfq = Tfm - Tfp; + TfG = Tfm + Tfp; + Tfr = FNMS(KP980785280, Tfq, KP195090322 * Tfh); + TfL = FMA(KP831469612, TfG, KP555570233 * TfF); + Tfv = FMA(KP195090322, Tfq, KP980785280 * Tfh); + TfH = FNMS(KP555570233, TfG, KP831469612 * TfF); + } + { + E TeQ, TfC, TeZ, TfD, TeP, TeY; + TeP = KP707106781 * (TeJ - TeO); + TeQ = TeE - TeP; + TfC = TeE + TeP; + TeY = KP707106781 * (TeW - TeX); + TeZ = TeV - TeY; + TfD = TeV + TeY; + Tf0 = FMA(KP980785280, TeQ, KP195090322 * TeZ); + TfK = FNMS(KP555570233, TfD, KP831469612 * TfC); + Tfu = FNMS(KP980785280, TeZ, KP195090322 * TeQ); + TfE = FMA(KP555570233, TfC, KP831469612 * TfD); + } + } + { + E Tez, Tfs, TiR, TiU; + Tez = Teb + Tey; + Tfs = Tf0 + Tfr; + ri[WS(rs, 46)] = Tez - Tfs; + ri[WS(rs, 14)] = Tez + Tfs; + TiR = Tfu + Tfv; + TiU = TiS + TiT; + ii[WS(rs, 14)] = TiR + TiU; + ii[WS(rs, 46)] = TiU - TiR; + } + { + E Tft, Tfw, TiV, TiW; + Tft = Teb - Tey; + Tfw = Tfu - Tfv; + ri[WS(rs, 62)] = Tft - Tfw; + ri[WS(rs, 30)] = Tft + Tfw; + TiV = Tfr - Tf0; + TiW = TiT - TiS; + ii[WS(rs, 30)] = TiV + TiW; + ii[WS(rs, 62)] = TiW - TiV; + } + { + E TfB, TfI, TiJ, TiO; + TfB = Tfx + TfA; + TfI = TfE + TfH; + ri[WS(rs, 38)] = TfB - TfI; + ri[WS(rs, 6)] = TfB + TfI; + TiJ = TfK + TfL; + TiO = TiK + TiN; + ii[WS(rs, 6)] = TiJ + TiO; + ii[WS(rs, 38)] = TiO - TiJ; + } + { + E TfJ, TfM, TiP, TiQ; + TfJ = Tfx - TfA; + TfM = TfK - TfL; + ri[WS(rs, 54)] = TfJ - TfM; + ri[WS(rs, 22)] = TfJ + TfM; + TiP = TfH - TfE; + TiQ = TiN - TiK; + ii[WS(rs, 22)] = TiP + TiQ; + ii[WS(rs, 54)] = TiQ - TiP; + } + } + { + E TfR, Tgj, TfY, Tiu, Tiz, TiF, Tgm, TiE, Tgd, Tgx, Tgh, Tgt, Tg6, Tgw, Tgg; + E Tgq; + { + E TfN, TfQ, Tgk, Tgl; + TfN = TdV + TdY; + TfQ = KP707106781 * (TfO + TfP); + TfR = TfN - TfQ; + Tgj = TfN + TfQ; + { + E TfU, TfX, Tiv, Tiy; + TfU = FNMS(KP382683432, TfT, KP923879532 * TfS); + TfX = FMA(KP923879532, TfV, KP382683432 * TfW); + TfY = TfU - TfX; + Tiu = TfU + TfX; + Tiv = KP707106781 * (Te4 + Te9); + Tiy = Tiw + Tix; + Tiz = Tiv + Tiy; + TiF = Tiy - Tiv; + } + Tgk = FMA(KP382683432, TfS, KP923879532 * TfT); + Tgl = FNMS(KP382683432, TfV, KP923879532 * TfW); + Tgm = Tgk + Tgl; + TiE = Tgl - Tgk; + { + E Tg9, Tgr, Tgc, Tgs, Tg8, Tgb; + Tg8 = KP707106781 * (Tfo + Tfn); + Tg9 = Tg7 - Tg8; + Tgr = Tg7 + Tg8; + Tgb = KP707106781 * (Tfa + Tff); + Tgc = Tga - Tgb; + Tgs = Tga + Tgb; + Tgd = FNMS(KP831469612, Tgc, KP555570233 * Tg9); + Tgx = FMA(KP195090322, Tgr, KP980785280 * Tgs); + Tgh = FMA(KP831469612, Tg9, KP555570233 * Tgc); + Tgt = FNMS(KP195090322, Tgs, KP980785280 * Tgr); + } + { + E Tg2, Tgo, Tg5, Tgp, Tg1, Tg4; + Tg1 = KP707106781 * (TeO + TeJ); + Tg2 = Tg0 - Tg1; + Tgo = Tg0 + Tg1; + Tg4 = KP707106781 * (TeW + TeX); + Tg5 = Tg3 - Tg4; + Tgp = Tg3 + Tg4; + Tg6 = FMA(KP555570233, Tg2, KP831469612 * Tg5); + Tgw = FNMS(KP195090322, Tgo, KP980785280 * Tgp); + Tgg = FNMS(KP831469612, Tg2, KP555570233 * Tg5); + Tgq = FMA(KP980785280, Tgo, KP195090322 * Tgp); + } + } + { + E TfZ, Tge, TiD, TiG; + TfZ = TfR + TfY; + Tge = Tg6 + Tgd; + ri[WS(rs, 42)] = TfZ - Tge; + ri[WS(rs, 10)] = TfZ + Tge; + TiD = Tgg + Tgh; + TiG = TiE + TiF; + ii[WS(rs, 10)] = TiD + TiG; + ii[WS(rs, 42)] = TiG - TiD; + } + { + E Tgf, Tgi, TiH, TiI; + Tgf = TfR - TfY; + Tgi = Tgg - Tgh; + ri[WS(rs, 58)] = Tgf - Tgi; + ri[WS(rs, 26)] = Tgf + Tgi; + TiH = Tgd - Tg6; + TiI = TiF - TiE; + ii[WS(rs, 26)] = TiH + TiI; + ii[WS(rs, 58)] = TiI - TiH; + } + { + E Tgn, Tgu, Tit, TiA; + Tgn = Tgj + Tgm; + Tgu = Tgq + Tgt; + ri[WS(rs, 34)] = Tgn - Tgu; + ri[WS(rs, 2)] = Tgn + Tgu; + Tit = Tgw + Tgx; + TiA = Tiu + Tiz; + ii[WS(rs, 2)] = Tit + TiA; + ii[WS(rs, 34)] = TiA - Tit; + } + { + E Tgv, Tgy, TiB, TiC; + Tgv = Tgj - Tgm; + Tgy = Tgw - Tgx; + ri[WS(rs, 50)] = Tgv - Tgy; + ri[WS(rs, 18)] = Tgv + Tgy; + TiB = Tgt - Tgq; + TiC = Tiz - Tiu; + ii[WS(rs, 18)] = TiB + TiC; + ii[WS(rs, 50)] = TiC - TiB; + } + } + { + E T7V, TaH, TjN, TjT, T8O, TjS, TaK, TjK, T9I, TaU, TaE, TaO, TaB, TaV, TaF; + E TaR; + { + E T7x, T7U, TjL, TjM; + T7x = T7l - T7w; + T7U = T7I - T7T; + T7V = T7x - T7U; + TaH = T7x + T7U; + TjL = TaZ - TaY; + TjM = Tjx - Tjw; + TjN = TjL + TjM; + TjT = TjM - TjL; + } + { + E T8m, TaI, T8N, TaJ; + { + E T8c, T8l, T8D, T8M; + T8c = T80 - T8b; + T8l = T8h - T8k; + T8m = FNMS(KP980785280, T8l, KP195090322 * T8c); + TaI = FMA(KP980785280, T8c, KP195090322 * T8l); + T8D = T8r - T8C; + T8M = T8I - T8L; + T8N = FMA(KP195090322, T8D, KP980785280 * T8M); + TaJ = FNMS(KP980785280, T8D, KP195090322 * T8M); + } + T8O = T8m - T8N; + TjS = TaJ - TaI; + TaK = TaI + TaJ; + TjK = T8m + T8N; + } + { + E T9u, TaM, T9H, TaN; + { + E T96, T9t, T9D, T9G; + T96 = T8U - T95; + T9t = T9h - T9s; + T9u = T96 - T9t; + TaM = T96 + T9t; + T9D = T9z - T9C; + T9G = T9E - T9F; + T9H = T9D - T9G; + TaN = T9D + T9G; + } + T9I = FMA(KP995184726, T9u, KP098017140 * T9H); + TaU = FNMS(KP634393284, TaN, KP773010453 * TaM); + TaE = FNMS(KP995184726, T9H, KP098017140 * T9u); + TaO = FMA(KP634393284, TaM, KP773010453 * TaN); + } + { + E Tan, TaP, TaA, TaQ; + { + E T9Z, Tam, Taw, Taz; + T9Z = T9N - T9Y; + Tam = Taa - Tal; + Tan = T9Z - Tam; + TaP = T9Z + Tam; + Taw = Tas - Tav; + Taz = Tax - Tay; + TaA = Taw - Taz; + TaQ = Taw + Taz; + } + TaB = FNMS(KP995184726, TaA, KP098017140 * Tan); + TaV = FMA(KP773010453, TaQ, KP634393284 * TaP); + TaF = FMA(KP098017140, TaA, KP995184726 * Tan); + TaR = FNMS(KP634393284, TaQ, KP773010453 * TaP); + } + { + E T8P, TaC, TjR, TjU; + T8P = T7V + T8O; + TaC = T9I + TaB; + ri[WS(rs, 47)] = T8P - TaC; + ri[WS(rs, 15)] = T8P + TaC; + TjR = TaE + TaF; + TjU = TjS + TjT; + ii[WS(rs, 15)] = TjR + TjU; + ii[WS(rs, 47)] = TjU - TjR; + } + { + E TaD, TaG, TjV, TjW; + TaD = T7V - T8O; + TaG = TaE - TaF; + ri[WS(rs, 63)] = TaD - TaG; + ri[WS(rs, 31)] = TaD + TaG; + TjV = TaB - T9I; + TjW = TjT - TjS; + ii[WS(rs, 31)] = TjV + TjW; + ii[WS(rs, 63)] = TjW - TjV; + } + { + E TaL, TaS, TjJ, TjO; + TaL = TaH + TaK; + TaS = TaO + TaR; + ri[WS(rs, 39)] = TaL - TaS; + ri[WS(rs, 7)] = TaL + TaS; + TjJ = TaU + TaV; + TjO = TjK + TjN; + ii[WS(rs, 7)] = TjJ + TjO; + ii[WS(rs, 39)] = TjO - TjJ; + } + { + E TaT, TaW, TjP, TjQ; + TaT = TaH - TaK; + TaW = TaU - TaV; + ri[WS(rs, 55)] = TaT - TaW; + ri[WS(rs, 23)] = TaT + TaW; + TjP = TaR - TaO; + TjQ = TjN - TjK; + ii[WS(rs, 23)] = TjP + TjQ; + ii[WS(rs, 55)] = TjQ - TjP; + } + } + { + E TbV, TcT, Tjj, Tjp, Tca, Tjo, TcW, Tjg, Tcu, Td6, TcQ, Td0, TcN, Td7, TcR; + E Td3; + { + E TbN, TbU, Tjh, Tji; + TbN = TbJ - TbM; + TbU = TbQ - TbT; + TbV = TbN - TbU; + TcT = TbN + TbU; + Tjh = Tdb - Tda; + Tji = Tj3 - Tj0; + Tjj = Tjh + Tji; + Tjp = Tji - Tjh; + } + { + E Tc2, TcU, Tc9, TcV; + { + E TbY, Tc1, Tc5, Tc8; + TbY = TbW - TbX; + Tc1 = TbZ - Tc0; + Tc2 = FNMS(KP831469612, Tc1, KP555570233 * TbY); + TcU = FMA(KP555570233, Tc1, KP831469612 * TbY); + Tc5 = Tc3 - Tc4; + Tc8 = Tc6 - Tc7; + Tc9 = FMA(KP831469612, Tc5, KP555570233 * Tc8); + TcV = FNMS(KP831469612, Tc8, KP555570233 * Tc5); + } + Tca = Tc2 - Tc9; + Tjo = TcV - TcU; + TcW = TcU + TcV; + Tjg = Tc2 + Tc9; + } + { + E Tcm, TcY, Tct, TcZ; + { + E Tce, Tcl, Tcp, Tcs; + Tce = Tcc - Tcd; + Tcl = Tch - Tck; + Tcm = Tce - Tcl; + TcY = Tce + Tcl; + Tcp = Tcn - Tco; + Tcs = Tcq - Tcr; + Tct = Tcp - Tcs; + TcZ = Tcp + Tcs; + } + Tcu = FMA(KP956940335, Tcm, KP290284677 * Tct); + Td6 = FNMS(KP471396736, TcZ, KP881921264 * TcY); + TcQ = FNMS(KP956940335, Tct, KP290284677 * Tcm); + Td0 = FMA(KP471396736, TcY, KP881921264 * TcZ); + } + { + E TcF, Td1, TcM, Td2; + { + E Tcx, TcE, TcI, TcL; + Tcx = Tcv - Tcw; + TcE = TcA - TcD; + TcF = Tcx - TcE; + Td1 = Tcx + TcE; + TcI = TcG - TcH; + TcL = TcJ - TcK; + TcM = TcI - TcL; + Td2 = TcI + TcL; + } + TcN = FNMS(KP956940335, TcM, KP290284677 * TcF); + Td7 = FMA(KP881921264, Td2, KP471396736 * Td1); + TcR = FMA(KP290284677, TcM, KP956940335 * TcF); + Td3 = FNMS(KP471396736, Td2, KP881921264 * Td1); + } + { + E Tcb, TcO, Tjn, Tjq; + Tcb = TbV + Tca; + TcO = Tcu + TcN; + ri[WS(rs, 45)] = Tcb - TcO; + ri[WS(rs, 13)] = Tcb + TcO; + Tjn = TcQ + TcR; + Tjq = Tjo + Tjp; + ii[WS(rs, 13)] = Tjn + Tjq; + ii[WS(rs, 45)] = Tjq - Tjn; + } + { + E TcP, TcS, Tjr, Tjs; + TcP = TbV - Tca; + TcS = TcQ - TcR; + ri[WS(rs, 61)] = TcP - TcS; + ri[WS(rs, 29)] = TcP + TcS; + Tjr = TcN - Tcu; + Tjs = Tjp - Tjo; + ii[WS(rs, 29)] = Tjr + Tjs; + ii[WS(rs, 61)] = Tjs - Tjr; + } + { + E TcX, Td4, Tjf, Tjk; + TcX = TcT + TcW; + Td4 = Td0 + Td3; + ri[WS(rs, 37)] = TcX - Td4; + ri[WS(rs, 5)] = TcX + Td4; + Tjf = Td6 + Td7; + Tjk = Tjg + Tjj; + ii[WS(rs, 5)] = Tjf + Tjk; + ii[WS(rs, 37)] = Tjk - Tjf; + } + { + E Td5, Td8, Tjl, Tjm; + Td5 = TcT - TcW; + Td8 = Td6 - Td7; + ri[WS(rs, 53)] = Td5 - Td8; + ri[WS(rs, 21)] = Td5 + Td8; + Tjl = Td3 - Td0; + Tjm = Tjj - Tjg; + ii[WS(rs, 21)] = Tjl + Tjm; + ii[WS(rs, 53)] = Tjm - Tjl; + } + } + { + E Tdd, TdF, Tj5, Tjb, Tdk, Tja, TdI, TiY, Tds, TdS, TdC, TdM, Tdz, TdT, TdD; + E TdP; + { + E Td9, Tdc, TiZ, Tj4; + Td9 = TbJ + TbM; + Tdc = Tda + Tdb; + Tdd = Td9 - Tdc; + TdF = Td9 + Tdc; + TiZ = TbQ + TbT; + Tj4 = Tj0 + Tj3; + Tj5 = TiZ + Tj4; + Tjb = Tj4 - TiZ; + } + { + E Tdg, TdG, Tdj, TdH; + { + E Tde, Tdf, Tdh, Tdi; + Tde = TbW + TbX; + Tdf = TbZ + Tc0; + Tdg = FNMS(KP195090322, Tdf, KP980785280 * Tde); + TdG = FMA(KP980785280, Tdf, KP195090322 * Tde); + Tdh = Tc3 + Tc4; + Tdi = Tc6 + Tc7; + Tdj = FMA(KP195090322, Tdh, KP980785280 * Tdi); + TdH = FNMS(KP195090322, Tdi, KP980785280 * Tdh); + } + Tdk = Tdg - Tdj; + Tja = TdH - TdG; + TdI = TdG + TdH; + TiY = Tdg + Tdj; + } + { + E Tdo, TdK, Tdr, TdL; + { + E Tdm, Tdn, Tdp, Tdq; + Tdm = Tcn + Tco; + Tdn = Tck + Tch; + Tdo = Tdm - Tdn; + TdK = Tdm + Tdn; + Tdp = Tcc + Tcd; + Tdq = Tcq + Tcr; + Tdr = Tdp - Tdq; + TdL = Tdp + Tdq; + } + Tds = FMA(KP634393284, Tdo, KP773010453 * Tdr); + TdS = FNMS(KP098017140, TdK, KP995184726 * TdL); + TdC = FNMS(KP773010453, Tdo, KP634393284 * Tdr); + TdM = FMA(KP995184726, TdK, KP098017140 * TdL); + } + { + E Tdv, TdN, Tdy, TdO; + { + E Tdt, Tdu, Tdw, Tdx; + Tdt = Tcv + Tcw; + Tdu = TcK + TcJ; + Tdv = Tdt - Tdu; + TdN = Tdt + Tdu; + Tdw = TcG + TcH; + Tdx = TcA + TcD; + Tdy = Tdw - Tdx; + TdO = Tdw + Tdx; + } + Tdz = FNMS(KP773010453, Tdy, KP634393284 * Tdv); + TdT = FMA(KP098017140, TdN, KP995184726 * TdO); + TdD = FMA(KP773010453, Tdv, KP634393284 * Tdy); + TdP = FNMS(KP098017140, TdO, KP995184726 * TdN); + } + { + E Tdl, TdA, Tj9, Tjc; + Tdl = Tdd + Tdk; + TdA = Tds + Tdz; + ri[WS(rs, 41)] = Tdl - TdA; + ri[WS(rs, 9)] = Tdl + TdA; + Tj9 = TdC + TdD; + Tjc = Tja + Tjb; + ii[WS(rs, 9)] = Tj9 + Tjc; + ii[WS(rs, 41)] = Tjc - Tj9; + } + { + E TdB, TdE, Tjd, Tje; + TdB = Tdd - Tdk; + TdE = TdC - TdD; + ri[WS(rs, 57)] = TdB - TdE; + ri[WS(rs, 25)] = TdB + TdE; + Tjd = Tdz - Tds; + Tje = Tjb - Tja; + ii[WS(rs, 25)] = Tjd + Tje; + ii[WS(rs, 57)] = Tje - Tjd; + } + { + E TdJ, TdQ, TiX, Tj6; + TdJ = TdF + TdI; + TdQ = TdM + TdP; + ri[WS(rs, 33)] = TdJ - TdQ; + ri[WS(rs, 1)] = TdJ + TdQ; + TiX = TdS + TdT; + Tj6 = TiY + Tj5; + ii[WS(rs, 1)] = TiX + Tj6; + ii[WS(rs, 33)] = Tj6 - TiX; + } + { + E TdR, TdU, Tj7, Tj8; + TdR = TdF - TdI; + TdU = TdS - TdT; + ri[WS(rs, 49)] = TdR - TdU; + ri[WS(rs, 17)] = TdR + TdU; + Tj7 = TdP - TdM; + Tj8 = Tj5 - TiY; + ii[WS(rs, 17)] = Tj7 + Tj8; + ii[WS(rs, 49)] = Tj8 - Tj7; + } + } + { + E Tb1, Tbt, Tjz, TjF, Tb8, TjE, Tbw, Tju, Tbg, TbG, Tbq, TbA, Tbn, TbH, Tbr; + E TbD; + { + E TaX, Tb0, Tjv, Tjy; + TaX = T7l + T7w; + Tb0 = TaY + TaZ; + Tb1 = TaX - Tb0; + Tbt = TaX + Tb0; + Tjv = T7I + T7T; + Tjy = Tjw + Tjx; + Tjz = Tjv + Tjy; + TjF = Tjy - Tjv; + } + { + E Tb4, Tbu, Tb7, Tbv; + { + E Tb2, Tb3, Tb5, Tb6; + Tb2 = T80 + T8b; + Tb3 = T8h + T8k; + Tb4 = FNMS(KP555570233, Tb3, KP831469612 * Tb2); + Tbu = FMA(KP555570233, Tb2, KP831469612 * Tb3); + Tb5 = T8r + T8C; + Tb6 = T8I + T8L; + Tb7 = FMA(KP831469612, Tb5, KP555570233 * Tb6); + Tbv = FNMS(KP555570233, Tb5, KP831469612 * Tb6); + } + Tb8 = Tb4 - Tb7; + TjE = Tbv - Tbu; + Tbw = Tbu + Tbv; + Tju = Tb4 + Tb7; + } + { + E Tbc, Tby, Tbf, Tbz; + { + E Tba, Tbb, Tbd, Tbe; + Tba = T9z + T9C; + Tbb = T9s + T9h; + Tbc = Tba - Tbb; + Tby = Tba + Tbb; + Tbd = T8U + T95; + Tbe = T9E + T9F; + Tbf = Tbd - Tbe; + Tbz = Tbd + Tbe; + } + Tbg = FMA(KP471396736, Tbc, KP881921264 * Tbf); + TbG = FNMS(KP290284677, Tby, KP956940335 * Tbz); + Tbq = FNMS(KP881921264, Tbc, KP471396736 * Tbf); + TbA = FMA(KP956940335, Tby, KP290284677 * Tbz); + } + { + E Tbj, TbB, Tbm, TbC; + { + E Tbh, Tbi, Tbk, Tbl; + Tbh = T9N + T9Y; + Tbi = Tay + Tax; + Tbj = Tbh - Tbi; + TbB = Tbh + Tbi; + Tbk = Tas + Tav; + Tbl = Taa + Tal; + Tbm = Tbk - Tbl; + TbC = Tbk + Tbl; + } + Tbn = FNMS(KP881921264, Tbm, KP471396736 * Tbj); + TbH = FMA(KP290284677, TbB, KP956940335 * TbC); + Tbr = FMA(KP881921264, Tbj, KP471396736 * Tbm); + TbD = FNMS(KP290284677, TbC, KP956940335 * TbB); + } + { + E Tb9, Tbo, TjD, TjG; + Tb9 = Tb1 + Tb8; + Tbo = Tbg + Tbn; + ri[WS(rs, 43)] = Tb9 - Tbo; + ri[WS(rs, 11)] = Tb9 + Tbo; + TjD = Tbq + Tbr; + TjG = TjE + TjF; + ii[WS(rs, 11)] = TjD + TjG; + ii[WS(rs, 43)] = TjG - TjD; + } + { + E Tbp, Tbs, TjH, TjI; + Tbp = Tb1 - Tb8; + Tbs = Tbq - Tbr; + ri[WS(rs, 59)] = Tbp - Tbs; + ri[WS(rs, 27)] = Tbp + Tbs; + TjH = Tbn - Tbg; + TjI = TjF - TjE; + ii[WS(rs, 27)] = TjH + TjI; + ii[WS(rs, 59)] = TjI - TjH; + } + { + E Tbx, TbE, Tjt, TjA; + Tbx = Tbt + Tbw; + TbE = TbA + TbD; + ri[WS(rs, 35)] = Tbx - TbE; + ri[WS(rs, 3)] = Tbx + TbE; + Tjt = TbG + TbH; + TjA = Tju + Tjz; + ii[WS(rs, 3)] = Tjt + TjA; + ii[WS(rs, 35)] = TjA - Tjt; + } + { + E TbF, TbI, TjB, TjC; + TbF = Tbt - Tbw; + TbI = TbG - TbH; + ri[WS(rs, 51)] = TbF - TbI; + ri[WS(rs, 19)] = TbF + TbI; + TjB = TbD - TbA; + TjC = Tjz - Tju; + ii[WS(rs, 19)] = TjB + TjC; + ii[WS(rs, 51)] = TjC - TjB; + } + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_CEXP, 0, 1}, + {TW_CEXP, 0, 3}, + {TW_CEXP, 0, 9}, + {TW_CEXP, 0, 27}, + {TW_CEXP, 0, 63}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 64, "t2_64", twinstr, &GENUS, {880, 386, 274, 0}, 0, 0, 0 }; + +void X(codelet_t2_64) (planner *p) { + X(kdft_dit_register) (p, t2_64, &desc); +} +#endif /* HAVE_FMA */