diff src/fftw-3.3.3/dft/scalar/codelets/t1_7.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/dft/scalar/codelets/t1_7.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,355 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sun Nov 25 07:35:48 EST 2012 */
+
+#include "codelet-dft.h"
+
+#ifdef HAVE_FMA
+
+/* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 7 -name t1_7 -include t.h */
+
+/*
+ * This function contains 72 FP additions, 66 FP multiplications,
+ * (or, 18 additions, 12 multiplications, 54 fused multiply/add),
+ * 66 stack variables, 6 constants, and 28 memory accesses
+ */
+#include "t.h"
+
+static void t1_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DK(KP974927912, +0.974927912181823607018131682993931217232785801);
+     DK(KP801937735, +0.801937735804838252472204639014890102331838324);
+     DK(KP900968867, +0.900968867902419126236102319507445051165919162);
+     DK(KP692021471, +0.692021471630095869627814897002069140197260599);
+     DK(KP554958132, +0.554958132087371191422194871006410481067288862);
+     DK(KP356895867, +0.356895867892209443894399510021300583399127187);
+     {
+	  INT m;
+	  for (m = mb, W = W + (mb * 12); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) {
+	       E T1c, T19, T1i, T18, T16, T1q, T1t, T1r, T1u, T1s;
+	       {
+		    E T1, TR, T1h, Te, Tt, Tw, T1a, TM, T1g, Tr, Tu, TS, Tz, TC, Ty;
+		    E Tv, TB;
+		    T1 = ri[0];
+		    T1c = ii[0];
+		    {
+			 E T9, Tc, TP, Ta, Tb, TO, T7;
+			 {
+			      E T3, T6, T8, TN, T4, T2, T5;
+			      T3 = ri[WS(rs, 1)];
+			      T6 = ii[WS(rs, 1)];
+			      T2 = W[0];
+			      T9 = ri[WS(rs, 6)];
+			      Tc = ii[WS(rs, 6)];
+			      T8 = W[10];
+			      TN = T2 * T6;
+			      T4 = T2 * T3;
+			      T5 = W[1];
+			      TP = T8 * Tc;
+			      Ta = T8 * T9;
+			      Tb = W[11];
+			      TO = FNMS(T5, T3, TN);
+			      T7 = FMA(T5, T6, T4);
+			 }
+			 {
+			      E Tg, Tj, Th, TI, Tm, Tp, Tl, Ti, To, TQ, Td, Tf;
+			      Tg = ri[WS(rs, 2)];
+			      TQ = FNMS(Tb, T9, TP);
+			      Td = FMA(Tb, Tc, Ta);
+			      Tj = ii[WS(rs, 2)];
+			      Tf = W[2];
+			      T19 = TO + TQ;
+			      TR = TO - TQ;
+			      T1h = Td - T7;
+			      Te = T7 + Td;
+			      Th = Tf * Tg;
+			      TI = Tf * Tj;
+			      Tm = ri[WS(rs, 5)];
+			      Tp = ii[WS(rs, 5)];
+			      Tl = W[8];
+			      Ti = W[3];
+			      To = W[9];
+			      {
+				   E TJ, Tk, TL, Tq, TK, Tn, Ts;
+				   Tt = ri[WS(rs, 3)];
+				   TK = Tl * Tp;
+				   Tn = Tl * Tm;
+				   TJ = FNMS(Ti, Tg, TI);
+				   Tk = FMA(Ti, Tj, Th);
+				   TL = FNMS(To, Tm, TK);
+				   Tq = FMA(To, Tp, Tn);
+				   Tw = ii[WS(rs, 3)];
+				   Ts = W[4];
+				   T1a = TJ + TL;
+				   TM = TJ - TL;
+				   T1g = Tq - Tk;
+				   Tr = Tk + Tq;
+				   Tu = Ts * Tt;
+				   TS = Ts * Tw;
+			      }
+			      Tz = ri[WS(rs, 4)];
+			      TC = ii[WS(rs, 4)];
+			      Ty = W[6];
+			      Tv = W[5];
+			      TB = W[7];
+			 }
+		    }
+		    {
+			 E TF, TT, Tx, TV, TD, T1d, TU, TA;
+			 TF = FNMS(KP356895867, Tr, Te);
+			 TU = Ty * TC;
+			 TA = Ty * Tz;
+			 TT = FNMS(Tv, Tt, TS);
+			 Tx = FMA(Tv, Tw, Tu);
+			 TV = FNMS(TB, Tz, TU);
+			 TD = FMA(TB, TC, TA);
+			 T1d = FNMS(KP356895867, T1a, T19);
+			 {
+			      E T1b, T15, T17, TW;
+			      T17 = FNMS(KP554958132, TR, TM);
+			      T1b = TT + TV;
+			      TW = TT - TV;
+			      {
+				   E TE, T1l, T1e, T12;
+				   T1i = TD - Tx;
+				   TE = Tx + TD;
+				   T1l = FNMS(KP356895867, T19, T1b);
+				   T1e = FNMS(KP692021471, T1d, T1b);
+				   ii[0] = T19 + T1a + T1b + T1c;
+				   T12 = FMA(KP554958132, TM, TW);
+				   {
+					E TX, T1o, T1j, T14;
+					TX = FMA(KP554958132, TW, TR);
+					T1o = FMA(KP554958132, T1g, T1i);
+					T1j = FMA(KP554958132, T1i, T1h);
+					T14 = FNMS(KP356895867, TE, Tr);
+					{
+					     E TZ, TG, T1m, T1f;
+					     TZ = FNMS(KP356895867, Te, TE);
+					     TG = FNMS(KP692021471, TF, TE);
+					     ri[0] = T1 + Te + Tr + TE;
+					     T1m = FNMS(KP692021471, T1l, T1a);
+					     T1f = FNMS(KP900968867, T1e, T1c);
+					     {
+						  E T13, TY, T1p, T1k;
+						  T13 = FNMS(KP801937735, T12, TR);
+						  TY = FMA(KP801937735, TX, TM);
+						  T1p = FNMS(KP801937735, T1o, T1h);
+						  T1k = FMA(KP801937735, T1j, T1g);
+						  T15 = FNMS(KP692021471, T14, Te);
+						  {
+						       E T10, TH, T1n, T11;
+						       T10 = FNMS(KP692021471, TZ, Tr);
+						       TH = FNMS(KP900968867, TG, T1);
+						       T1n = FNMS(KP900968867, T1m, T1c);
+						       ii[WS(rs, 6)] = FNMS(KP974927912, T1k, T1f);
+						       ii[WS(rs, 1)] = FMA(KP974927912, T1k, T1f);
+						       T11 = FNMS(KP900968867, T10, T1);
+						       ri[WS(rs, 1)] = FMA(KP974927912, TY, TH);
+						       ri[WS(rs, 6)] = FNMS(KP974927912, TY, TH);
+						       ii[WS(rs, 5)] = FNMS(KP974927912, T1p, T1n);
+						       ii[WS(rs, 2)] = FMA(KP974927912, T1p, T1n);
+						       ri[WS(rs, 2)] = FMA(KP974927912, T13, T11);
+						       ri[WS(rs, 5)] = FNMS(KP974927912, T13, T11);
+						       T18 = FNMS(KP801937735, T17, TW);
+						  }
+					     }
+					}
+				   }
+			      }
+			      T16 = FNMS(KP900968867, T15, T1);
+			      T1q = FNMS(KP356895867, T1b, T1a);
+			      T1t = FNMS(KP554958132, T1h, T1g);
+			 }
+		    }
+	       }
+	       ri[WS(rs, 3)] = FMA(KP974927912, T18, T16);
+	       ri[WS(rs, 4)] = FNMS(KP974927912, T18, T16);
+	       T1r = FNMS(KP692021471, T1q, T19);
+	       T1u = FNMS(KP801937735, T1t, T1i);
+	       T1s = FNMS(KP900968867, T1r, T1c);
+	       ii[WS(rs, 4)] = FNMS(KP974927912, T1u, T1s);
+	       ii[WS(rs, 3)] = FMA(KP974927912, T1u, T1s);
+	  }
+     }
+}
+
+static const tw_instr twinstr[] = {
+     {TW_FULL, 0, 7},
+     {TW_NEXT, 1, 0}
+};
+
+static const ct_desc desc = { 7, "t1_7", twinstr, &GENUS, {18, 12, 54, 0}, 0, 0, 0 };
+
+void X(codelet_t1_7) (planner *p) {
+     X(kdft_dit_register) (p, t1_7, &desc);
+}
+#else				/* HAVE_FMA */
+
+/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 7 -name t1_7 -include t.h */
+
+/*
+ * This function contains 72 FP additions, 60 FP multiplications,
+ * (or, 36 additions, 24 multiplications, 36 fused multiply/add),
+ * 29 stack variables, 6 constants, and 28 memory accesses
+ */
+#include "t.h"
+
+static void t1_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DK(KP222520933, +0.222520933956314404288902564496794759466355569);
+     DK(KP900968867, +0.900968867902419126236102319507445051165919162);
+     DK(KP623489801, +0.623489801858733530525004884004239810632274731);
+     DK(KP433883739, +0.433883739117558120475768332848358754609990728);
+     DK(KP781831482, +0.781831482468029808708444526674057750232334519);
+     DK(KP974927912, +0.974927912181823607018131682993931217232785801);
+     {
+	  INT m;
+	  for (m = mb, W = W + (mb * 12); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) {
+	       E T1, TR, Tc, TS, TC, TO, Tn, TT, TI, TP, Ty, TU, TF, TQ;
+	       T1 = ri[0];
+	       TR = ii[0];
+	       {
+		    E T6, TA, Tb, TB;
+		    {
+			 E T3, T5, T2, T4;
+			 T3 = ri[WS(rs, 1)];
+			 T5 = ii[WS(rs, 1)];
+			 T2 = W[0];
+			 T4 = W[1];
+			 T6 = FMA(T2, T3, T4 * T5);
+			 TA = FNMS(T4, T3, T2 * T5);
+		    }
+		    {
+			 E T8, Ta, T7, T9;
+			 T8 = ri[WS(rs, 6)];
+			 Ta = ii[WS(rs, 6)];
+			 T7 = W[10];
+			 T9 = W[11];
+			 Tb = FMA(T7, T8, T9 * Ta);
+			 TB = FNMS(T9, T8, T7 * Ta);
+		    }
+		    Tc = T6 + Tb;
+		    TS = Tb - T6;
+		    TC = TA - TB;
+		    TO = TA + TB;
+	       }
+	       {
+		    E Th, TG, Tm, TH;
+		    {
+			 E Te, Tg, Td, Tf;
+			 Te = ri[WS(rs, 2)];
+			 Tg = ii[WS(rs, 2)];
+			 Td = W[2];
+			 Tf = W[3];
+			 Th = FMA(Td, Te, Tf * Tg);
+			 TG = FNMS(Tf, Te, Td * Tg);
+		    }
+		    {
+			 E Tj, Tl, Ti, Tk;
+			 Tj = ri[WS(rs, 5)];
+			 Tl = ii[WS(rs, 5)];
+			 Ti = W[8];
+			 Tk = W[9];
+			 Tm = FMA(Ti, Tj, Tk * Tl);
+			 TH = FNMS(Tk, Tj, Ti * Tl);
+		    }
+		    Tn = Th + Tm;
+		    TT = Tm - Th;
+		    TI = TG - TH;
+		    TP = TG + TH;
+	       }
+	       {
+		    E Ts, TD, Tx, TE;
+		    {
+			 E Tp, Tr, To, Tq;
+			 Tp = ri[WS(rs, 3)];
+			 Tr = ii[WS(rs, 3)];
+			 To = W[4];
+			 Tq = W[5];
+			 Ts = FMA(To, Tp, Tq * Tr);
+			 TD = FNMS(Tq, Tp, To * Tr);
+		    }
+		    {
+			 E Tu, Tw, Tt, Tv;
+			 Tu = ri[WS(rs, 4)];
+			 Tw = ii[WS(rs, 4)];
+			 Tt = W[6];
+			 Tv = W[7];
+			 Tx = FMA(Tt, Tu, Tv * Tw);
+			 TE = FNMS(Tv, Tu, Tt * Tw);
+		    }
+		    Ty = Ts + Tx;
+		    TU = Tx - Ts;
+		    TF = TD - TE;
+		    TQ = TD + TE;
+	       }
+	       ri[0] = T1 + Tc + Tn + Ty;
+	       ii[0] = TO + TP + TQ + TR;
+	       {
+		    E TJ, Tz, TX, TY;
+		    TJ = FNMS(KP781831482, TF, KP974927912 * TC) - (KP433883739 * TI);
+		    Tz = FMA(KP623489801, Ty, T1) + FNMA(KP900968867, Tn, KP222520933 * Tc);
+		    ri[WS(rs, 5)] = Tz - TJ;
+		    ri[WS(rs, 2)] = Tz + TJ;
+		    TX = FNMS(KP781831482, TU, KP974927912 * TS) - (KP433883739 * TT);
+		    TY = FMA(KP623489801, TQ, TR) + FNMA(KP900968867, TP, KP222520933 * TO);
+		    ii[WS(rs, 2)] = TX + TY;
+		    ii[WS(rs, 5)] = TY - TX;
+	       }
+	       {
+		    E TL, TK, TV, TW;
+		    TL = FMA(KP781831482, TC, KP974927912 * TI) + (KP433883739 * TF);
+		    TK = FMA(KP623489801, Tc, T1) + FNMA(KP900968867, Ty, KP222520933 * Tn);
+		    ri[WS(rs, 6)] = TK - TL;
+		    ri[WS(rs, 1)] = TK + TL;
+		    TV = FMA(KP781831482, TS, KP974927912 * TT) + (KP433883739 * TU);
+		    TW = FMA(KP623489801, TO, TR) + FNMA(KP900968867, TQ, KP222520933 * TP);
+		    ii[WS(rs, 1)] = TV + TW;
+		    ii[WS(rs, 6)] = TW - TV;
+	       }
+	       {
+		    E TN, TM, TZ, T10;
+		    TN = FMA(KP433883739, TC, KP974927912 * TF) - (KP781831482 * TI);
+		    TM = FMA(KP623489801, Tn, T1) + FNMA(KP222520933, Ty, KP900968867 * Tc);
+		    ri[WS(rs, 4)] = TM - TN;
+		    ri[WS(rs, 3)] = TM + TN;
+		    TZ = FMA(KP433883739, TS, KP974927912 * TU) - (KP781831482 * TT);
+		    T10 = FMA(KP623489801, TP, TR) + FNMA(KP222520933, TQ, KP900968867 * TO);
+		    ii[WS(rs, 3)] = TZ + T10;
+		    ii[WS(rs, 4)] = T10 - TZ;
+	       }
+	  }
+     }
+}
+
+static const tw_instr twinstr[] = {
+     {TW_FULL, 0, 7},
+     {TW_NEXT, 1, 0}
+};
+
+static const ct_desc desc = { 7, "t1_7", twinstr, &GENUS, {36, 24, 36, 0}, 0, 0, 0 };
+
+void X(codelet_t1_7) (planner *p) {
+     X(kdft_dit_register) (p, t1_7, &desc);
+}
+#endif				/* HAVE_FMA */