Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/scalar/codelets/t1_7.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/scalar/codelets/t1_7.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,355 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:35:48 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 7 -name t1_7 -include t.h */ + +/* + * This function contains 72 FP additions, 66 FP multiplications, + * (or, 18 additions, 12 multiplications, 54 fused multiply/add), + * 66 stack variables, 6 constants, and 28 memory accesses + */ +#include "t.h" + +static void t1_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP974927912, +0.974927912181823607018131682993931217232785801); + DK(KP801937735, +0.801937735804838252472204639014890102331838324); + DK(KP900968867, +0.900968867902419126236102319507445051165919162); + DK(KP692021471, +0.692021471630095869627814897002069140197260599); + DK(KP554958132, +0.554958132087371191422194871006410481067288862); + DK(KP356895867, +0.356895867892209443894399510021300583399127187); + { + INT m; + for (m = mb, W = W + (mb * 12); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) { + E T1c, T19, T1i, T18, T16, T1q, T1t, T1r, T1u, T1s; + { + E T1, TR, T1h, Te, Tt, Tw, T1a, TM, T1g, Tr, Tu, TS, Tz, TC, Ty; + E Tv, TB; + T1 = ri[0]; + T1c = ii[0]; + { + E T9, Tc, TP, Ta, Tb, TO, T7; + { + E T3, T6, T8, TN, T4, T2, T5; + T3 = ri[WS(rs, 1)]; + T6 = ii[WS(rs, 1)]; + T2 = W[0]; + T9 = ri[WS(rs, 6)]; + Tc = ii[WS(rs, 6)]; + T8 = W[10]; + TN = T2 * T6; + T4 = T2 * T3; + T5 = W[1]; + TP = T8 * Tc; + Ta = T8 * T9; + Tb = W[11]; + TO = FNMS(T5, T3, TN); + T7 = FMA(T5, T6, T4); + } + { + E Tg, Tj, Th, TI, Tm, Tp, Tl, Ti, To, TQ, Td, Tf; + Tg = ri[WS(rs, 2)]; + TQ = FNMS(Tb, T9, TP); + Td = FMA(Tb, Tc, Ta); + Tj = ii[WS(rs, 2)]; + Tf = W[2]; + T19 = TO + TQ; + TR = TO - TQ; + T1h = Td - T7; + Te = T7 + Td; + Th = Tf * Tg; + TI = Tf * Tj; + Tm = ri[WS(rs, 5)]; + Tp = ii[WS(rs, 5)]; + Tl = W[8]; + Ti = W[3]; + To = W[9]; + { + E TJ, Tk, TL, Tq, TK, Tn, Ts; + Tt = ri[WS(rs, 3)]; + TK = Tl * Tp; + Tn = Tl * Tm; + TJ = FNMS(Ti, Tg, TI); + Tk = FMA(Ti, Tj, Th); + TL = FNMS(To, Tm, TK); + Tq = FMA(To, Tp, Tn); + Tw = ii[WS(rs, 3)]; + Ts = W[4]; + T1a = TJ + TL; + TM = TJ - TL; + T1g = Tq - Tk; + Tr = Tk + Tq; + Tu = Ts * Tt; + TS = Ts * Tw; + } + Tz = ri[WS(rs, 4)]; + TC = ii[WS(rs, 4)]; + Ty = W[6]; + Tv = W[5]; + TB = W[7]; + } + } + { + E TF, TT, Tx, TV, TD, T1d, TU, TA; + TF = FNMS(KP356895867, Tr, Te); + TU = Ty * TC; + TA = Ty * Tz; + TT = FNMS(Tv, Tt, TS); + Tx = FMA(Tv, Tw, Tu); + TV = FNMS(TB, Tz, TU); + TD = FMA(TB, TC, TA); + T1d = FNMS(KP356895867, T1a, T19); + { + E T1b, T15, T17, TW; + T17 = FNMS(KP554958132, TR, TM); + T1b = TT + TV; + TW = TT - TV; + { + E TE, T1l, T1e, T12; + T1i = TD - Tx; + TE = Tx + TD; + T1l = FNMS(KP356895867, T19, T1b); + T1e = FNMS(KP692021471, T1d, T1b); + ii[0] = T19 + T1a + T1b + T1c; + T12 = FMA(KP554958132, TM, TW); + { + E TX, T1o, T1j, T14; + TX = FMA(KP554958132, TW, TR); + T1o = FMA(KP554958132, T1g, T1i); + T1j = FMA(KP554958132, T1i, T1h); + T14 = FNMS(KP356895867, TE, Tr); + { + E TZ, TG, T1m, T1f; + TZ = FNMS(KP356895867, Te, TE); + TG = FNMS(KP692021471, TF, TE); + ri[0] = T1 + Te + Tr + TE; + T1m = FNMS(KP692021471, T1l, T1a); + T1f = FNMS(KP900968867, T1e, T1c); + { + E T13, TY, T1p, T1k; + T13 = FNMS(KP801937735, T12, TR); + TY = FMA(KP801937735, TX, TM); + T1p = FNMS(KP801937735, T1o, T1h); + T1k = FMA(KP801937735, T1j, T1g); + T15 = FNMS(KP692021471, T14, Te); + { + E T10, TH, T1n, T11; + T10 = FNMS(KP692021471, TZ, Tr); + TH = FNMS(KP900968867, TG, T1); + T1n = FNMS(KP900968867, T1m, T1c); + ii[WS(rs, 6)] = FNMS(KP974927912, T1k, T1f); + ii[WS(rs, 1)] = FMA(KP974927912, T1k, T1f); + T11 = FNMS(KP900968867, T10, T1); + ri[WS(rs, 1)] = FMA(KP974927912, TY, TH); + ri[WS(rs, 6)] = FNMS(KP974927912, TY, TH); + ii[WS(rs, 5)] = FNMS(KP974927912, T1p, T1n); + ii[WS(rs, 2)] = FMA(KP974927912, T1p, T1n); + ri[WS(rs, 2)] = FMA(KP974927912, T13, T11); + ri[WS(rs, 5)] = FNMS(KP974927912, T13, T11); + T18 = FNMS(KP801937735, T17, TW); + } + } + } + } + } + T16 = FNMS(KP900968867, T15, T1); + T1q = FNMS(KP356895867, T1b, T1a); + T1t = FNMS(KP554958132, T1h, T1g); + } + } + } + ri[WS(rs, 3)] = FMA(KP974927912, T18, T16); + ri[WS(rs, 4)] = FNMS(KP974927912, T18, T16); + T1r = FNMS(KP692021471, T1q, T19); + T1u = FNMS(KP801937735, T1t, T1i); + T1s = FNMS(KP900968867, T1r, T1c); + ii[WS(rs, 4)] = FNMS(KP974927912, T1u, T1s); + ii[WS(rs, 3)] = FMA(KP974927912, T1u, T1s); + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 0, 7}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 7, "t1_7", twinstr, &GENUS, {18, 12, 54, 0}, 0, 0, 0 }; + +void X(codelet_t1_7) (planner *p) { + X(kdft_dit_register) (p, t1_7, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 7 -name t1_7 -include t.h */ + +/* + * This function contains 72 FP additions, 60 FP multiplications, + * (or, 36 additions, 24 multiplications, 36 fused multiply/add), + * 29 stack variables, 6 constants, and 28 memory accesses + */ +#include "t.h" + +static void t1_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP222520933, +0.222520933956314404288902564496794759466355569); + DK(KP900968867, +0.900968867902419126236102319507445051165919162); + DK(KP623489801, +0.623489801858733530525004884004239810632274731); + DK(KP433883739, +0.433883739117558120475768332848358754609990728); + DK(KP781831482, +0.781831482468029808708444526674057750232334519); + DK(KP974927912, +0.974927912181823607018131682993931217232785801); + { + INT m; + for (m = mb, W = W + (mb * 12); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) { + E T1, TR, Tc, TS, TC, TO, Tn, TT, TI, TP, Ty, TU, TF, TQ; + T1 = ri[0]; + TR = ii[0]; + { + E T6, TA, Tb, TB; + { + E T3, T5, T2, T4; + T3 = ri[WS(rs, 1)]; + T5 = ii[WS(rs, 1)]; + T2 = W[0]; + T4 = W[1]; + T6 = FMA(T2, T3, T4 * T5); + TA = FNMS(T4, T3, T2 * T5); + } + { + E T8, Ta, T7, T9; + T8 = ri[WS(rs, 6)]; + Ta = ii[WS(rs, 6)]; + T7 = W[10]; + T9 = W[11]; + Tb = FMA(T7, T8, T9 * Ta); + TB = FNMS(T9, T8, T7 * Ta); + } + Tc = T6 + Tb; + TS = Tb - T6; + TC = TA - TB; + TO = TA + TB; + } + { + E Th, TG, Tm, TH; + { + E Te, Tg, Td, Tf; + Te = ri[WS(rs, 2)]; + Tg = ii[WS(rs, 2)]; + Td = W[2]; + Tf = W[3]; + Th = FMA(Td, Te, Tf * Tg); + TG = FNMS(Tf, Te, Td * Tg); + } + { + E Tj, Tl, Ti, Tk; + Tj = ri[WS(rs, 5)]; + Tl = ii[WS(rs, 5)]; + Ti = W[8]; + Tk = W[9]; + Tm = FMA(Ti, Tj, Tk * Tl); + TH = FNMS(Tk, Tj, Ti * Tl); + } + Tn = Th + Tm; + TT = Tm - Th; + TI = TG - TH; + TP = TG + TH; + } + { + E Ts, TD, Tx, TE; + { + E Tp, Tr, To, Tq; + Tp = ri[WS(rs, 3)]; + Tr = ii[WS(rs, 3)]; + To = W[4]; + Tq = W[5]; + Ts = FMA(To, Tp, Tq * Tr); + TD = FNMS(Tq, Tp, To * Tr); + } + { + E Tu, Tw, Tt, Tv; + Tu = ri[WS(rs, 4)]; + Tw = ii[WS(rs, 4)]; + Tt = W[6]; + Tv = W[7]; + Tx = FMA(Tt, Tu, Tv * Tw); + TE = FNMS(Tv, Tu, Tt * Tw); + } + Ty = Ts + Tx; + TU = Tx - Ts; + TF = TD - TE; + TQ = TD + TE; + } + ri[0] = T1 + Tc + Tn + Ty; + ii[0] = TO + TP + TQ + TR; + { + E TJ, Tz, TX, TY; + TJ = FNMS(KP781831482, TF, KP974927912 * TC) - (KP433883739 * TI); + Tz = FMA(KP623489801, Ty, T1) + FNMA(KP900968867, Tn, KP222520933 * Tc); + ri[WS(rs, 5)] = Tz - TJ; + ri[WS(rs, 2)] = Tz + TJ; + TX = FNMS(KP781831482, TU, KP974927912 * TS) - (KP433883739 * TT); + TY = FMA(KP623489801, TQ, TR) + FNMA(KP900968867, TP, KP222520933 * TO); + ii[WS(rs, 2)] = TX + TY; + ii[WS(rs, 5)] = TY - TX; + } + { + E TL, TK, TV, TW; + TL = FMA(KP781831482, TC, KP974927912 * TI) + (KP433883739 * TF); + TK = FMA(KP623489801, Tc, T1) + FNMA(KP900968867, Ty, KP222520933 * Tn); + ri[WS(rs, 6)] = TK - TL; + ri[WS(rs, 1)] = TK + TL; + TV = FMA(KP781831482, TS, KP974927912 * TT) + (KP433883739 * TU); + TW = FMA(KP623489801, TO, TR) + FNMA(KP900968867, TQ, KP222520933 * TP); + ii[WS(rs, 1)] = TV + TW; + ii[WS(rs, 6)] = TW - TV; + } + { + E TN, TM, TZ, T10; + TN = FMA(KP433883739, TC, KP974927912 * TF) - (KP781831482 * TI); + TM = FMA(KP623489801, Tn, T1) + FNMA(KP222520933, Ty, KP900968867 * Tc); + ri[WS(rs, 4)] = TM - TN; + ri[WS(rs, 3)] = TM + TN; + TZ = FMA(KP433883739, TS, KP974927912 * TU) - (KP781831482 * TT); + T10 = FMA(KP623489801, TP, TR) + FNMA(KP222520933, TQ, KP900968867 * TO); + ii[WS(rs, 3)] = TZ + T10; + ii[WS(rs, 4)] = T10 - TZ; + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 0, 7}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 7, "t1_7", twinstr, &GENUS, {36, 24, 36, 0}, 0, 0, 0 }; + +void X(codelet_t1_7) (planner *p) { + X(kdft_dit_register) (p, t1_7, &desc); +} +#endif /* HAVE_FMA */