Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/scalar/codelets/t1_5.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/scalar/codelets/t1_5.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,259 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:35:47 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 5 -name t1_5 -include t.h */ + +/* + * This function contains 40 FP additions, 34 FP multiplications, + * (or, 14 additions, 8 multiplications, 26 fused multiply/add), + * 43 stack variables, 4 constants, and 20 memory accesses + */ +#include "t.h" + +static void t1_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP618033988, +0.618033988749894848204586834365638117720309180); + { + INT m; + for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) { + E T1, TM, TJ, TA, TQ, Te, TC, Tk, TE, Tq; + { + E Tg, Tj, Tm, TB, Th, Tp, Tl, Ti, To, TD, Tn; + T1 = ri[0]; + TM = ii[0]; + { + E T9, Tc, Ty, Ta, Tb, Tx, T7, Tf, Tz, Td; + { + E T3, T6, T8, Tw, T4, T2, T5; + T3 = ri[WS(rs, 1)]; + T6 = ii[WS(rs, 1)]; + T2 = W[0]; + T9 = ri[WS(rs, 4)]; + Tc = ii[WS(rs, 4)]; + T8 = W[6]; + Tw = T2 * T6; + T4 = T2 * T3; + T5 = W[1]; + Ty = T8 * Tc; + Ta = T8 * T9; + Tb = W[7]; + Tx = FNMS(T5, T3, Tw); + T7 = FMA(T5, T6, T4); + } + Tg = ri[WS(rs, 2)]; + Tz = FNMS(Tb, T9, Ty); + Td = FMA(Tb, Tc, Ta); + Tj = ii[WS(rs, 2)]; + Tf = W[2]; + TJ = Tx + Tz; + TA = Tx - Tz; + TQ = T7 - Td; + Te = T7 + Td; + Tm = ri[WS(rs, 3)]; + TB = Tf * Tj; + Th = Tf * Tg; + Tp = ii[WS(rs, 3)]; + Tl = W[4]; + Ti = W[3]; + To = W[5]; + } + TD = Tl * Tp; + Tn = Tl * Tm; + TC = FNMS(Ti, Tg, TB); + Tk = FMA(Ti, Tj, Th); + TE = FNMS(To, Tm, TD); + Tq = FMA(To, Tp, Tn); + } + { + E TG, TI, TO, TS, TU, Tu, TN, Tt, TK, TF; + TK = TC + TE; + TF = TC - TE; + { + E Tr, TR, TL, Ts; + Tr = Tk + Tq; + TR = Tk - Tq; + TG = FMA(KP618033988, TF, TA); + TI = FNMS(KP618033988, TA, TF); + TO = TJ - TK; + TL = TJ + TK; + TS = FMA(KP618033988, TR, TQ); + TU = FNMS(KP618033988, TQ, TR); + Tu = Te - Tr; + Ts = Te + Tr; + ii[0] = TL + TM; + TN = FNMS(KP250000000, TL, TM); + ri[0] = T1 + Ts; + Tt = FNMS(KP250000000, Ts, T1); + } + { + E TT, TP, TH, Tv; + TT = FNMS(KP559016994, TO, TN); + TP = FMA(KP559016994, TO, TN); + TH = FNMS(KP559016994, Tu, Tt); + Tv = FMA(KP559016994, Tu, Tt); + ii[WS(rs, 4)] = FMA(KP951056516, TS, TP); + ii[WS(rs, 1)] = FNMS(KP951056516, TS, TP); + ii[WS(rs, 3)] = FNMS(KP951056516, TU, TT); + ii[WS(rs, 2)] = FMA(KP951056516, TU, TT); + ri[WS(rs, 1)] = FMA(KP951056516, TG, Tv); + ri[WS(rs, 4)] = FNMS(KP951056516, TG, Tv); + ri[WS(rs, 3)] = FMA(KP951056516, TI, TH); + ri[WS(rs, 2)] = FNMS(KP951056516, TI, TH); + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 0, 5}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 5, "t1_5", twinstr, &GENUS, {14, 8, 26, 0}, 0, 0, 0 }; + +void X(codelet_t1_5) (planner *p) { + X(kdft_dit_register) (p, t1_5, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 5 -name t1_5 -include t.h */ + +/* + * This function contains 40 FP additions, 28 FP multiplications, + * (or, 26 additions, 14 multiplications, 14 fused multiply/add), + * 29 stack variables, 4 constants, and 20 memory accesses + */ +#include "t.h" + +static void t1_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP587785252, +0.587785252292473129168705954639072768597652438); + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + { + INT m; + for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) { + E T1, TE, Tu, Tx, TJ, TI, TB, TC, TD, Tc, Tn, To; + T1 = ri[0]; + TE = ii[0]; + { + E T6, Ts, Tm, Tw, Tb, Tt, Th, Tv; + { + E T3, T5, T2, T4; + T3 = ri[WS(rs, 1)]; + T5 = ii[WS(rs, 1)]; + T2 = W[0]; + T4 = W[1]; + T6 = FMA(T2, T3, T4 * T5); + Ts = FNMS(T4, T3, T2 * T5); + } + { + E Tj, Tl, Ti, Tk; + Tj = ri[WS(rs, 3)]; + Tl = ii[WS(rs, 3)]; + Ti = W[4]; + Tk = W[5]; + Tm = FMA(Ti, Tj, Tk * Tl); + Tw = FNMS(Tk, Tj, Ti * Tl); + } + { + E T8, Ta, T7, T9; + T8 = ri[WS(rs, 4)]; + Ta = ii[WS(rs, 4)]; + T7 = W[6]; + T9 = W[7]; + Tb = FMA(T7, T8, T9 * Ta); + Tt = FNMS(T9, T8, T7 * Ta); + } + { + E Te, Tg, Td, Tf; + Te = ri[WS(rs, 2)]; + Tg = ii[WS(rs, 2)]; + Td = W[2]; + Tf = W[3]; + Th = FMA(Td, Te, Tf * Tg); + Tv = FNMS(Tf, Te, Td * Tg); + } + Tu = Ts - Tt; + Tx = Tv - Tw; + TJ = Th - Tm; + TI = T6 - Tb; + TB = Ts + Tt; + TC = Tv + Tw; + TD = TB + TC; + Tc = T6 + Tb; + Tn = Th + Tm; + To = Tc + Tn; + } + ri[0] = T1 + To; + ii[0] = TD + TE; + { + E Ty, TA, Tr, Tz, Tp, Tq; + Ty = FMA(KP951056516, Tu, KP587785252 * Tx); + TA = FNMS(KP587785252, Tu, KP951056516 * Tx); + Tp = KP559016994 * (Tc - Tn); + Tq = FNMS(KP250000000, To, T1); + Tr = Tp + Tq; + Tz = Tq - Tp; + ri[WS(rs, 4)] = Tr - Ty; + ri[WS(rs, 3)] = Tz + TA; + ri[WS(rs, 1)] = Tr + Ty; + ri[WS(rs, 2)] = Tz - TA; + } + { + E TK, TL, TH, TM, TF, TG; + TK = FMA(KP951056516, TI, KP587785252 * TJ); + TL = FNMS(KP587785252, TI, KP951056516 * TJ); + TF = KP559016994 * (TB - TC); + TG = FNMS(KP250000000, TD, TE); + TH = TF + TG; + TM = TG - TF; + ii[WS(rs, 1)] = TH - TK; + ii[WS(rs, 3)] = TM - TL; + ii[WS(rs, 4)] = TK + TH; + ii[WS(rs, 2)] = TL + TM; + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 0, 5}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 5, "t1_5", twinstr, &GENUS, {26, 14, 14, 0}, 0, 0, 0 }; + +void X(codelet_t1_5) (planner *p) { + X(kdft_dit_register) (p, t1_5, &desc); +} +#endif /* HAVE_FMA */