diff src/fftw-3.3.3/dft/scalar/codelets/q1_3.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/dft/scalar/codelets/q1_3.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,316 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sun Nov 25 07:36:23 EST 2012 */
+
+#include "codelet-dft.h"
+
+#ifdef HAVE_FMA
+
+/* Generated by: ../../../genfft/gen_twidsq.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 3 -name q1_3 -include q.h */
+
+/*
+ * This function contains 48 FP additions, 42 FP multiplications,
+ * (or, 18 additions, 12 multiplications, 30 fused multiply/add),
+ * 56 stack variables, 2 constants, and 36 memory accesses
+ */
+#include "q.h"
+
+static void q1_3(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
+{
+     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
+     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     {
+	  INT m;
+	  for (m = mb, W = W + (mb * 4); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 4, MAKE_VOLATILE_STRIDE(6, rs), MAKE_VOLATILE_STRIDE(0, vs)) {
+	       E Tk, Tn, Tm, To, Tl;
+	       {
+		    E T1, Td, T4, Tg, Tp, T9, Te, T6, Tf, TB, TE, Ts, TZ, Tu, Tx;
+		    E TC, TN, TO, TD, TV, T10, TP, Tq, Tr;
+		    {
+			 E T2, T3, T7, T8;
+			 T1 = rio[0];
+			 T2 = rio[WS(rs, 1)];
+			 T3 = rio[WS(rs, 2)];
+			 Td = iio[0];
+			 T7 = iio[WS(rs, 1)];
+			 T8 = iio[WS(rs, 2)];
+			 T4 = T2 + T3;
+			 Tg = T3 - T2;
+			 Tp = rio[WS(vs, 1)];
+			 T9 = T7 - T8;
+			 Te = T7 + T8;
+			 T6 = FNMS(KP500000000, T4, T1);
+			 Tq = rio[WS(vs, 1) + WS(rs, 1)];
+			 Tr = rio[WS(vs, 1) + WS(rs, 2)];
+			 Tf = FNMS(KP500000000, Te, Td);
+		    }
+		    {
+			 E Tv, Tw, TT, TU;
+			 TB = iio[WS(vs, 1)];
+			 Tv = iio[WS(vs, 1) + WS(rs, 1)];
+			 TE = Tr - Tq;
+			 Ts = Tq + Tr;
+			 Tw = iio[WS(vs, 1) + WS(rs, 2)];
+			 TZ = iio[WS(vs, 2)];
+			 TT = iio[WS(vs, 2) + WS(rs, 1)];
+			 Tu = FNMS(KP500000000, Ts, Tp);
+			 Tx = Tv - Tw;
+			 TC = Tv + Tw;
+			 TU = iio[WS(vs, 2) + WS(rs, 2)];
+			 TN = rio[WS(vs, 2)];
+			 TO = rio[WS(vs, 2) + WS(rs, 1)];
+			 TD = FNMS(KP500000000, TC, TB);
+			 TV = TT - TU;
+			 T10 = TT + TU;
+			 TP = rio[WS(vs, 2) + WS(rs, 2)];
+		    }
+		    {
+			 E T11, T12, TS, TQ;
+			 rio[0] = T1 + T4;
+			 iio[0] = Td + Te;
+			 T11 = FNMS(KP500000000, T10, TZ);
+			 T12 = TP - TO;
+			 TQ = TO + TP;
+			 rio[WS(rs, 1)] = Tp + Ts;
+			 iio[WS(rs, 1)] = TB + TC;
+			 iio[WS(rs, 2)] = TZ + T10;
+			 TS = FNMS(KP500000000, TQ, TN);
+			 rio[WS(rs, 2)] = TN + TQ;
+			 {
+			      E TW, T13, Ty, TI, TL, TF, TH, TK;
+			      {
+				   E Ta, Th, T5, Tc;
+				   Tk = FNMS(KP866025403, T9, T6);
+				   Ta = FMA(KP866025403, T9, T6);
+				   Th = FMA(KP866025403, Tg, Tf);
+				   Tn = FNMS(KP866025403, Tg, Tf);
+				   T5 = W[0];
+				   Tc = W[1];
+				   {
+					E T16, T19, T18, T1a, T17, Ti, Tb, T15;
+					TW = FMA(KP866025403, TV, TS);
+					T16 = FNMS(KP866025403, TV, TS);
+					T19 = FNMS(KP866025403, T12, T11);
+					T13 = FMA(KP866025403, T12, T11);
+					Ti = T5 * Th;
+					Tb = T5 * Ta;
+					T15 = W[2];
+					T18 = W[3];
+					iio[WS(vs, 1)] = FNMS(Tc, Ta, Ti);
+					rio[WS(vs, 1)] = FMA(Tc, Th, Tb);
+					T1a = T15 * T19;
+					T17 = T15 * T16;
+					Ty = FMA(KP866025403, Tx, Tu);
+					TI = FNMS(KP866025403, Tx, Tu);
+					TL = FNMS(KP866025403, TE, TD);
+					TF = FMA(KP866025403, TE, TD);
+					iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T18, T16, T1a);
+					rio[WS(vs, 2) + WS(rs, 2)] = FMA(T18, T19, T17);
+					TH = W[2];
+					TK = W[3];
+				   }
+			      }
+			      {
+				   E TA, TG, Tz, TM, TJ, Tt;
+				   TM = TH * TL;
+				   TJ = TH * TI;
+				   Tt = W[0];
+				   TA = W[1];
+				   iio[WS(vs, 2) + WS(rs, 1)] = FNMS(TK, TI, TM);
+				   rio[WS(vs, 2) + WS(rs, 1)] = FMA(TK, TL, TJ);
+				   TG = Tt * TF;
+				   Tz = Tt * Ty;
+				   {
+					E TR, TY, T14, TX, Tj;
+					iio[WS(vs, 1) + WS(rs, 1)] = FNMS(TA, Ty, TG);
+					rio[WS(vs, 1) + WS(rs, 1)] = FMA(TA, TF, Tz);
+					TR = W[0];
+					TY = W[1];
+					T14 = TR * T13;
+					TX = TR * TW;
+					Tj = W[2];
+					Tm = W[3];
+					iio[WS(vs, 1) + WS(rs, 2)] = FNMS(TY, TW, T14);
+					rio[WS(vs, 1) + WS(rs, 2)] = FMA(TY, T13, TX);
+					To = Tj * Tn;
+					Tl = Tj * Tk;
+				   }
+			      }
+			 }
+		    }
+	       }
+	       iio[WS(vs, 2)] = FNMS(Tm, Tk, To);
+	       rio[WS(vs, 2)] = FMA(Tm, Tn, Tl);
+	  }
+     }
+}
+
+static const tw_instr twinstr[] = {
+     {TW_FULL, 0, 3},
+     {TW_NEXT, 1, 0}
+};
+
+static const ct_desc desc = { 3, "q1_3", twinstr, &GENUS, {18, 12, 30, 0}, 0, 0, 0 };
+
+void X(codelet_q1_3) (planner *p) {
+     X(kdft_difsq_register) (p, q1_3, &desc);
+}
+#else				/* HAVE_FMA */
+
+/* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 3 -name q1_3 -include q.h */
+
+/*
+ * This function contains 48 FP additions, 36 FP multiplications,
+ * (or, 30 additions, 18 multiplications, 18 fused multiply/add),
+ * 35 stack variables, 2 constants, and 36 memory accesses
+ */
+#include "q.h"
+
+static void q1_3(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
+{
+     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
+     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     {
+	  INT m;
+	  for (m = mb, W = W + (mb * 4); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 4, MAKE_VOLATILE_STRIDE(6, rs), MAKE_VOLATILE_STRIDE(0, vs)) {
+	       E T1, T4, T6, Tc, Td, Te, T9, Tf, Tl, To, Tq, Tw, Tx, Ty, Tt;
+	       E Tz, TR, TS, TN, TT, TF, TI, TK, TQ;
+	       {
+		    E T2, T3, Tr, Ts;
+		    T1 = rio[0];
+		    T2 = rio[WS(rs, 1)];
+		    T3 = rio[WS(rs, 2)];
+		    T4 = T2 + T3;
+		    T6 = FNMS(KP500000000, T4, T1);
+		    Tc = KP866025403 * (T3 - T2);
+		    {
+			 E T7, T8, Tm, Tn;
+			 Td = iio[0];
+			 T7 = iio[WS(rs, 1)];
+			 T8 = iio[WS(rs, 2)];
+			 Te = T7 + T8;
+			 T9 = KP866025403 * (T7 - T8);
+			 Tf = FNMS(KP500000000, Te, Td);
+			 Tl = rio[WS(vs, 1)];
+			 Tm = rio[WS(vs, 1) + WS(rs, 1)];
+			 Tn = rio[WS(vs, 1) + WS(rs, 2)];
+			 To = Tm + Tn;
+			 Tq = FNMS(KP500000000, To, Tl);
+			 Tw = KP866025403 * (Tn - Tm);
+		    }
+		    Tx = iio[WS(vs, 1)];
+		    Tr = iio[WS(vs, 1) + WS(rs, 1)];
+		    Ts = iio[WS(vs, 1) + WS(rs, 2)];
+		    Ty = Tr + Ts;
+		    Tt = KP866025403 * (Tr - Ts);
+		    Tz = FNMS(KP500000000, Ty, Tx);
+		    {
+			 E TL, TM, TG, TH;
+			 TR = iio[WS(vs, 2)];
+			 TL = iio[WS(vs, 2) + WS(rs, 1)];
+			 TM = iio[WS(vs, 2) + WS(rs, 2)];
+			 TS = TL + TM;
+			 TN = KP866025403 * (TL - TM);
+			 TT = FNMS(KP500000000, TS, TR);
+			 TF = rio[WS(vs, 2)];
+			 TG = rio[WS(vs, 2) + WS(rs, 1)];
+			 TH = rio[WS(vs, 2) + WS(rs, 2)];
+			 TI = TG + TH;
+			 TK = FNMS(KP500000000, TI, TF);
+			 TQ = KP866025403 * (TH - TG);
+		    }
+	       }
+	       rio[0] = T1 + T4;
+	       iio[0] = Td + Te;
+	       rio[WS(rs, 1)] = Tl + To;
+	       iio[WS(rs, 1)] = Tx + Ty;
+	       iio[WS(rs, 2)] = TR + TS;
+	       rio[WS(rs, 2)] = TF + TI;
+	       {
+		    E Ta, Tg, T5, Tb;
+		    Ta = T6 + T9;
+		    Tg = Tc + Tf;
+		    T5 = W[0];
+		    Tb = W[1];
+		    rio[WS(vs, 1)] = FMA(T5, Ta, Tb * Tg);
+		    iio[WS(vs, 1)] = FNMS(Tb, Ta, T5 * Tg);
+	       }
+	       {
+		    E TW, TY, TV, TX;
+		    TW = TK - TN;
+		    TY = TT - TQ;
+		    TV = W[2];
+		    TX = W[3];
+		    rio[WS(vs, 2) + WS(rs, 2)] = FMA(TV, TW, TX * TY);
+		    iio[WS(vs, 2) + WS(rs, 2)] = FNMS(TX, TW, TV * TY);
+	       }
+	       {
+		    E TC, TE, TB, TD;
+		    TC = Tq - Tt;
+		    TE = Tz - Tw;
+		    TB = W[2];
+		    TD = W[3];
+		    rio[WS(vs, 2) + WS(rs, 1)] = FMA(TB, TC, TD * TE);
+		    iio[WS(vs, 2) + WS(rs, 1)] = FNMS(TD, TC, TB * TE);
+	       }
+	       {
+		    E Tu, TA, Tp, Tv;
+		    Tu = Tq + Tt;
+		    TA = Tw + Tz;
+		    Tp = W[0];
+		    Tv = W[1];
+		    rio[WS(vs, 1) + WS(rs, 1)] = FMA(Tp, Tu, Tv * TA);
+		    iio[WS(vs, 1) + WS(rs, 1)] = FNMS(Tv, Tu, Tp * TA);
+	       }
+	       {
+		    E TO, TU, TJ, TP;
+		    TO = TK + TN;
+		    TU = TQ + TT;
+		    TJ = W[0];
+		    TP = W[1];
+		    rio[WS(vs, 1) + WS(rs, 2)] = FMA(TJ, TO, TP * TU);
+		    iio[WS(vs, 1) + WS(rs, 2)] = FNMS(TP, TO, TJ * TU);
+	       }
+	       {
+		    E Ti, Tk, Th, Tj;
+		    Ti = T6 - T9;
+		    Tk = Tf - Tc;
+		    Th = W[2];
+		    Tj = W[3];
+		    rio[WS(vs, 2)] = FMA(Th, Ti, Tj * Tk);
+		    iio[WS(vs, 2)] = FNMS(Tj, Ti, Th * Tk);
+	       }
+	  }
+     }
+}
+
+static const tw_instr twinstr[] = {
+     {TW_FULL, 0, 3},
+     {TW_NEXT, 1, 0}
+};
+
+static const ct_desc desc = { 3, "q1_3", twinstr, &GENUS, {30, 18, 18, 0}, 0, 0, 0 };
+
+void X(codelet_q1_3) (planner *p) {
+     X(kdft_difsq_register) (p, q1_3, &desc);
+}
+#endif				/* HAVE_FMA */