Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/rader.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/rader.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,327 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +#include "dft.h" + +/* + * Compute transforms of prime sizes using Rader's trick: turn them + * into convolutions of size n - 1, which you then perform via a pair + * of FFTs. + */ + +typedef struct { + solver super; +} S; + +typedef struct { + plan_dft super; + + plan *cld1, *cld2; + R *omega; + INT n, g, ginv; + INT is, os; + plan *cld_omega; +} P; + +static rader_tl *omegas = 0; + +static R *mkomega(enum wakefulness wakefulness, plan *p_, INT n, INT ginv) +{ + plan_dft *p = (plan_dft *) p_; + R *omega; + INT i, gpower; + trigreal scale; + triggen *t; + + if ((omega = X(rader_tl_find)(n, n, ginv, omegas))) + return omega; + + omega = (R *)MALLOC(sizeof(R) * (n - 1) * 2, TWIDDLES); + + scale = n - 1.0; /* normalization for convolution */ + + t = X(mktriggen)(wakefulness, n); + for (i = 0, gpower = 1; i < n-1; ++i, gpower = MULMOD(gpower, ginv, n)) { + trigreal w[2]; + t->cexpl(t, gpower, w); + omega[2*i] = w[0] / scale; + omega[2*i+1] = FFT_SIGN * w[1] / scale; + } + X(triggen_destroy)(t); + A(gpower == 1); + + p->apply(p_, omega, omega + 1, omega, omega + 1); + + X(rader_tl_insert)(n, n, ginv, omega, &omegas); + return omega; +} + +static void free_omega(R *omega) +{ + X(rader_tl_delete)(omega, &omegas); +} + + +/***************************************************************************/ + +/* Below, we extensively use the identity that fft(x*)* = ifft(x) in + order to share data between forward and backward transforms and to + obviate the necessity of having separate forward and backward + plans. (Although we often compute separate plans these days anyway + due to the differing strides, etcetera.) + + Of course, since the new FFTW gives us separate pointers to + the real and imaginary parts, we could have instead used the + fft(r,i) = ifft(i,r) form of this identity, but it was easier to + reuse the code from our old version. */ + +static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) +{ + const P *ego = (const P *) ego_; + INT is, os; + INT k, gpower, g, r; + R *buf; + R r0 = ri[0], i0 = ii[0]; + + r = ego->n; is = ego->is; os = ego->os; g = ego->g; + buf = (R *) MALLOC(sizeof(R) * (r - 1) * 2, BUFFERS); + + /* First, permute the input, storing in buf: */ + for (gpower = 1, k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) { + R rA, iA; + rA = ri[gpower * is]; + iA = ii[gpower * is]; + buf[2*k] = rA; buf[2*k + 1] = iA; + } + /* gpower == g^(r-1) mod r == 1 */; + + + /* compute DFT of buf, storing in output (except DC): */ + { + plan_dft *cld = (plan_dft *) ego->cld1; + cld->apply(ego->cld1, buf, buf+1, ro+os, io+os); + } + + /* set output DC component: */ + { + ro[0] = r0 + ro[os]; + io[0] = i0 + io[os]; + } + + /* now, multiply by omega: */ + { + const R *omega = ego->omega; + for (k = 0; k < r - 1; ++k) { + E rB, iB, rW, iW; + rW = omega[2*k]; + iW = omega[2*k+1]; + rB = ro[(k+1)*os]; + iB = io[(k+1)*os]; + ro[(k+1)*os] = rW * rB - iW * iB; + io[(k+1)*os] = -(rW * iB + iW * rB); + } + } + + /* this will add input[0] to all of the outputs after the ifft */ + ro[os] += r0; + io[os] -= i0; + + /* inverse FFT: */ + { + plan_dft *cld = (plan_dft *) ego->cld2; + cld->apply(ego->cld2, ro+os, io+os, buf, buf+1); + } + + /* finally, do inverse permutation to unshuffle the output: */ + { + INT ginv = ego->ginv; + gpower = 1; + for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, ginv, r)) { + ro[gpower * os] = buf[2*k]; + io[gpower * os] = -buf[2*k+1]; + } + A(gpower == 1); + } + + + X(ifree)(buf); +} + +/***************************************************************************/ + +static void awake(plan *ego_, enum wakefulness wakefulness) +{ + P *ego = (P *) ego_; + + X(plan_awake)(ego->cld1, wakefulness); + X(plan_awake)(ego->cld2, wakefulness); + X(plan_awake)(ego->cld_omega, wakefulness); + + switch (wakefulness) { + case SLEEPY: + free_omega(ego->omega); + ego->omega = 0; + break; + default: + ego->g = X(find_generator)(ego->n); + ego->ginv = X(power_mod)(ego->g, ego->n - 2, ego->n); + A(MULMOD(ego->g, ego->ginv, ego->n) == 1); + + ego->omega = mkomega(wakefulness, + ego->cld_omega, ego->n, ego->ginv); + break; + } +} + +static void destroy(plan *ego_) +{ + P *ego = (P *) ego_; + X(plan_destroy_internal)(ego->cld_omega); + X(plan_destroy_internal)(ego->cld2); + X(plan_destroy_internal)(ego->cld1); +} + +static void print(const plan *ego_, printer *p) +{ + const P *ego = (const P *)ego_; + p->print(p, "(dft-rader-%D%ois=%oos=%(%p%)", + ego->n, ego->is, ego->os, ego->cld1); + if (ego->cld2 != ego->cld1) + p->print(p, "%(%p%)", ego->cld2); + if (ego->cld_omega != ego->cld1 && ego->cld_omega != ego->cld2) + p->print(p, "%(%p%)", ego->cld_omega); + p->putchr(p, ')'); +} + +static int applicable(const solver *ego_, const problem *p_, + const planner *plnr) +{ + const problem_dft *p = (const problem_dft *) p_; + UNUSED(ego_); + return (1 + && p->sz->rnk == 1 + && p->vecsz->rnk == 0 + && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > RADER_MAX_SLOW) + && X(is_prime)(p->sz->dims[0].n) + + /* proclaim the solver SLOW if p-1 is not easily factorizable. + Bluestein should take care of this case. */ + && CIMPLIES(NO_SLOWP(plnr), X(factors_into_small_primes)(p->sz->dims[0].n - 1)) + ); +} + +static int mkP(P *pln, INT n, INT is, INT os, R *ro, R *io, + planner *plnr) +{ + plan *cld1 = (plan *) 0; + plan *cld2 = (plan *) 0; + plan *cld_omega = (plan *) 0; + R *buf = (R *) 0; + + /* initial allocation for the purpose of planning */ + buf = (R *) MALLOC(sizeof(R) * (n - 1) * 2, BUFFERS); + + cld1 = X(mkplan_f_d)(plnr, + X(mkproblem_dft_d)(X(mktensor_1d)(n - 1, 2, os), + X(mktensor_1d)(1, 0, 0), + buf, buf + 1, ro + os, io + os), + NO_SLOW, 0, 0); + if (!cld1) goto nada; + + cld2 = X(mkplan_f_d)(plnr, + X(mkproblem_dft_d)(X(mktensor_1d)(n - 1, os, 2), + X(mktensor_1d)(1, 0, 0), + ro + os, io + os, buf, buf + 1), + NO_SLOW, 0, 0); + + if (!cld2) goto nada; + + /* plan for omega array */ + cld_omega = X(mkplan_f_d)(plnr, + X(mkproblem_dft_d)(X(mktensor_1d)(n - 1, 2, 2), + X(mktensor_1d)(1, 0, 0), + buf, buf + 1, buf, buf + 1), + NO_SLOW, ESTIMATE, 0); + if (!cld_omega) goto nada; + + /* deallocate buffers; let awake() or apply() allocate them for real */ + X(ifree)(buf); + buf = 0; + + pln->cld1 = cld1; + pln->cld2 = cld2; + pln->cld_omega = cld_omega; + pln->omega = 0; + pln->n = n; + pln->is = is; + pln->os = os; + + X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops); + pln->super.super.ops.other += (n - 1) * (4 * 2 + 6) + 6; + pln->super.super.ops.add += (n - 1) * 2 + 4; + pln->super.super.ops.mul += (n - 1) * 4; + + return 1; + + nada: + X(ifree0)(buf); + X(plan_destroy_internal)(cld_omega); + X(plan_destroy_internal)(cld2); + X(plan_destroy_internal)(cld1); + return 0; +} + +static plan *mkplan(const solver *ego, const problem *p_, planner *plnr) +{ + const problem_dft *p = (const problem_dft *) p_; + P *pln; + INT n; + INT is, os; + + static const plan_adt padt = { + X(dft_solve), awake, print, destroy + }; + + if (!applicable(ego, p_, plnr)) + return (plan *) 0; + + n = p->sz->dims[0].n; + is = p->sz->dims[0].is; + os = p->sz->dims[0].os; + + pln = MKPLAN_DFT(P, &padt, apply); + if (!mkP(pln, n, is, os, p->ro, p->io, plnr)) { + X(ifree)(pln); + return (plan *) 0; + } + return &(pln->super.super); +} + +static solver *mksolver(void) +{ + static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; + S *slv = MKSOLVER(S, &sadt); + return &(slv->super); +} + +void X(dft_rader_register)(planner *p) +{ + REGISTER_SOLVER(p, mksolver()); +}