diff src/fftw-3.3.3/dft/buffered.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/dft/buffered.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,284 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+
+#include "dft.h"
+
+typedef struct {
+     solver super;
+     int maxnbuf_ndx;
+} S;
+
+static const INT maxnbufs[] = { 8, 256 };
+
+typedef struct {
+     plan_dft super;
+
+     plan *cld, *cldcpy, *cldrest;
+     INT n, vl, nbuf, bufdist;
+     INT ivs_by_nbuf, ovs_by_nbuf;
+     INT roffset, ioffset;
+} P;
+
+/* transform a vector input with the help of bufs */
+static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
+{
+     const P *ego = (const P *) ego_;
+     INT nbuf = ego->nbuf;
+     R *bufs = (R *)MALLOC(sizeof(R) * nbuf * ego->bufdist * 2, BUFFERS);
+
+     plan_dft *cld = (plan_dft *) ego->cld;
+     plan_dft *cldcpy = (plan_dft *) ego->cldcpy;
+     plan_dft *cldrest;
+     INT i, vl = ego->vl;
+     INT ivs_by_nbuf = ego->ivs_by_nbuf, ovs_by_nbuf = ego->ovs_by_nbuf;
+     INT roffset = ego->roffset, ioffset = ego->ioffset;
+
+     for (i = nbuf; i <= vl; i += nbuf) {
+          /* transform to bufs: */
+          cld->apply((plan *) cld, ri, ii, bufs + roffset, bufs + ioffset);
+	  ri += ivs_by_nbuf; ii += ivs_by_nbuf;
+
+          /* copy back */
+          cldcpy->apply((plan *) cldcpy, bufs+roffset, bufs+ioffset, ro, io);
+	  ro += ovs_by_nbuf; io += ovs_by_nbuf;
+     }
+
+     X(ifree)(bufs);
+
+     /* Do the remaining transforms, if any: */
+     cldrest = (plan_dft *) ego->cldrest;
+     cldrest->apply((plan *) cldrest, ri, ii, ro, io);
+}
+
+
+static void awake(plan *ego_, enum wakefulness wakefulness)
+{
+     P *ego = (P *) ego_;
+
+     X(plan_awake)(ego->cld, wakefulness);
+     X(plan_awake)(ego->cldcpy, wakefulness);
+     X(plan_awake)(ego->cldrest, wakefulness);
+}
+
+static void destroy(plan *ego_)
+{
+     P *ego = (P *) ego_;
+     X(plan_destroy_internal)(ego->cldrest);
+     X(plan_destroy_internal)(ego->cldcpy);
+     X(plan_destroy_internal)(ego->cld);
+}
+
+static void print(const plan *ego_, printer *p)
+{
+     const P *ego = (const P *) ego_;
+     p->print(p, "(dft-buffered-%D%v/%D-%D%(%p%)%(%p%)%(%p%))",
+              ego->n, ego->nbuf,
+              ego->vl, ego->bufdist % ego->n,
+              ego->cld, ego->cldcpy, ego->cldrest);
+}
+
+static int applicable0(const S *ego, const problem *p_, const planner *plnr)
+{
+     const problem_dft *p = (const problem_dft *) p_;
+     const iodim *d = p->sz->dims;
+
+     if (1
+	 && p->vecsz->rnk <= 1
+	 && p->sz->rnk == 1
+	  ) {
+	  INT vl, ivs, ovs;
+	  X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs);
+
+	  if (X(toobig)(p->sz->dims[0].n) && CONSERVE_MEMORYP(plnr))
+	       return 0;
+
+	  /* if this solver is redundant, in the sense that a solver
+	     of lower index generates the same plan, then prune this
+	     solver */
+	  if (X(nbuf_redundant)(d[0].n, vl, 
+				ego->maxnbuf_ndx,
+				maxnbufs, NELEM(maxnbufs)))
+	       return 0;
+
+	  /*
+	    In principle, the buffered transforms might be useful
+	    when working out of place.  However, in order to
+	    prevent infinite loops in the planner, we require
+	    that the output stride of the buffered transforms be
+	    greater than 2.
+	  */
+	  if (p->ri != p->ro)
+	       return (d[0].os > 2);
+
+	  /*
+	   * If the problem is in place, the input/output strides must
+	   * be the same or the whole thing must fit in the buffer.
+	   */
+	  if (X(tensor_inplace_strides2)(p->sz, p->vecsz))
+	       return 1;
+
+	  if (/* fits into buffer: */
+	       ((p->vecsz->rnk == 0)
+		||
+		(X(nbuf)(d[0].n, p->vecsz->dims[0].n, 
+			 maxnbufs[ego->maxnbuf_ndx]) 
+		 == p->vecsz->dims[0].n)))
+	       return 1;
+     }
+
+     return 0;
+}
+
+static int applicable(const S *ego, const problem *p_, const planner *plnr)
+{
+     if (NO_BUFFERINGP(plnr)) return 0;
+     if (!applicable0(ego, p_, plnr)) return 0;
+
+     if (NO_UGLYP(plnr)) {
+	  const problem_dft *p = (const problem_dft *) p_;
+	  if (p->ri != p->ro) return 0;
+	  if (X(toobig)(p->sz->dims[0].n)) return 0;
+     }
+     return 1;
+}
+
+static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
+{
+     P *pln;
+     const S *ego = (const S *)ego_;
+     plan *cld = (plan *) 0;
+     plan *cldcpy = (plan *) 0;
+     plan *cldrest = (plan *) 0;
+     const problem_dft *p = (const problem_dft *) p_;
+     R *bufs = (R *) 0;
+     INT nbuf = 0, bufdist, n, vl;
+     INT ivs, ovs, roffset, ioffset;
+
+     static const plan_adt padt = {
+	  X(dft_solve), awake, print, destroy
+     };
+
+     if (!applicable(ego, p_, plnr))
+          goto nada;
+
+     n = X(tensor_sz)(p->sz);
+
+     X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs);
+
+     nbuf = X(nbuf)(n, vl, maxnbufs[ego->maxnbuf_ndx]);
+     bufdist = X(bufdist)(n, vl);
+     A(nbuf > 0);
+
+     /* attempt to keep real and imaginary part in the same order,
+	so as to allow optimizations in the the copy plan */
+     roffset = (p->ri - p->ii > 0) ? (INT)1 : (INT)0;
+     ioffset = 1 - roffset;
+
+     /* initial allocation for the purpose of planning */
+     bufs = (R *) MALLOC(sizeof(R) * nbuf * bufdist * 2, BUFFERS);
+
+     /* allow destruction of input if problem is in place */
+     cld = X(mkplan_f_d)(plnr,
+			 X(mkproblem_dft_d)(
+			      X(mktensor_1d)(n, p->sz->dims[0].is, 2),
+			      X(mktensor_1d)(nbuf, ivs, bufdist * 2),
+			      TAINT(p->ri, ivs * nbuf),
+			      TAINT(p->ii, ivs * nbuf),
+			      bufs + roffset, 
+			      bufs + ioffset),
+			 0, 0, (p->ri == p->ro) ? NO_DESTROY_INPUT : 0);
+     if (!cld)
+          goto nada;
+
+     /* copying back from the buffer is a rank-0 transform: */
+     cldcpy = X(mkplan_d)(plnr,
+			  X(mkproblem_dft_d)(
+			       X(mktensor_0d)(),
+			       X(mktensor_2d)(nbuf, bufdist * 2, ovs,
+					      n, 2, p->sz->dims[0].os),
+			       bufs + roffset, 
+			       bufs + ioffset, 
+			       TAINT(p->ro, ovs * nbuf), 
+			       TAINT(p->io, ovs * nbuf)));
+     if (!cldcpy)
+          goto nada;
+
+     /* deallocate buffers, let apply() allocate them for real */
+     X(ifree)(bufs);
+     bufs = 0;
+
+     /* plan the leftover transforms (cldrest): */
+     {
+	  INT id = ivs * (nbuf * (vl / nbuf));
+	  INT od = ovs * (nbuf * (vl / nbuf));
+	  cldrest = X(mkplan_d)(plnr, 
+				X(mkproblem_dft_d)(
+				     X(tensor_copy)(p->sz),
+				     X(mktensor_1d)(vl % nbuf, ivs, ovs),
+				     p->ri+id, p->ii+id, p->ro+od, p->io+od));
+     }
+     if (!cldrest)
+          goto nada;
+
+     pln = MKPLAN_DFT(P, &padt, apply);
+     pln->cld = cld;
+     pln->cldcpy = cldcpy;
+     pln->cldrest = cldrest;
+     pln->n = n;
+     pln->vl = vl;
+     pln->ivs_by_nbuf = ivs * nbuf;
+     pln->ovs_by_nbuf = ovs * nbuf;
+     pln->roffset = roffset;
+     pln->ioffset = ioffset;
+
+     pln->nbuf = nbuf;
+     pln->bufdist = bufdist;
+
+     {
+	  opcnt t;
+	  X(ops_add)(&cld->ops, &cldcpy->ops, &t);
+	  X(ops_madd)(vl / nbuf, &t, &cldrest->ops, &pln->super.super.ops);
+     }
+
+     return &(pln->super.super);
+
+ nada:
+     X(ifree0)(bufs);
+     X(plan_destroy_internal)(cldrest);
+     X(plan_destroy_internal)(cldcpy);
+     X(plan_destroy_internal)(cld);
+     return (plan *) 0;
+}
+
+static solver *mksolver(int maxnbuf_ndx)
+{
+     static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
+     S *slv = MKSOLVER(S, &sadt);
+     slv->maxnbuf_ndx = maxnbuf_ndx;
+     return &(slv->super);
+}
+
+void X(dft_buffered_register)(planner *p)
+{
+     size_t i;
+     for (i = 0; i < NELEM(maxnbufs); ++i)
+	  REGISTER_SOLVER(p, mksolver(i));
+}