diff src/fftw-3.3.3/dft/bluestein.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/dft/bluestein.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,250 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+#include "dft.h"
+
+typedef struct {
+     solver super;
+} S;
+
+typedef struct {
+     plan_dft super;
+     INT n;     /* problem size */
+     INT nb;    /* size of convolution */
+     R *w;      /* lambda k . exp(2*pi*i*k^2/(2*n)) */
+     R *W;      /* DFT(w) */
+     plan *cldf;
+     INT is, os;
+} P;
+
+static void bluestein_sequence(enum wakefulness wakefulness, INT n, R *w)
+{
+     INT k, ksq, n2 = 2 * n;
+     triggen *t = X(mktriggen)(wakefulness, n2);
+
+     ksq = 0;
+     for (k = 0; k < n; ++k) {
+	  t->cexp(t, ksq, w+2*k);
+          /* careful with overflow */
+          ksq += 2*k + 1; while (ksq > n2) ksq -= n2;
+     }
+
+     X(triggen_destroy)(t);
+}
+
+static void mktwiddle(enum wakefulness wakefulness, P *p)
+{
+     INT i;
+     INT n = p->n, nb = p->nb;
+     R *w, *W;
+     E nbf = (E)nb;
+
+     p->w = w = (R *) MALLOC(2 * n * sizeof(R), TWIDDLES);
+     p->W = W = (R *) MALLOC(2 * nb * sizeof(R), TWIDDLES);
+
+     bluestein_sequence(wakefulness, n, w);
+
+     for (i = 0; i < nb; ++i)
+          W[2*i] = W[2*i+1] = K(0.0);
+
+     W[0] = w[0] / nbf;
+     W[1] = w[1] / nbf;
+
+     for (i = 1; i < n; ++i) {
+          W[2*i] = W[2*(nb-i)] = w[2*i] / nbf;
+          W[2*i+1] = W[2*(nb-i)+1] = w[2*i+1] / nbf;
+     }
+
+     {
+          plan_dft *cldf = (plan_dft *)p->cldf;
+	  /* cldf must be awake */
+          cldf->apply(p->cldf, W, W+1, W, W+1);
+     }
+}
+
+static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
+{
+     const P *ego = (const P *) ego_;
+     INT i, n = ego->n, nb = ego->nb, is = ego->is, os = ego->os;
+     R *w = ego->w, *W = ego->W;
+     R *b = (R *) MALLOC(2 * nb * sizeof(R), BUFFERS);
+
+     /* multiply input by conjugate bluestein sequence */
+     for (i = 0; i < n; ++i) {
+	  E xr = ri[i*is], xi = ii[i*is];
+          E wr = w[2*i], wi = w[2*i+1];
+          b[2*i] = xr * wr + xi * wi;
+          b[2*i+1] = xi * wr - xr * wi;
+     }
+
+     for (; i < nb; ++i) b[2*i] = b[2*i+1] = K(0.0);
+
+     /* convolution: FFT */
+     {
+          plan_dft *cldf = (plan_dft *)ego->cldf;
+          cldf->apply(ego->cldf, b, b+1, b, b+1);
+     }
+
+     /* convolution: pointwise multiplication */
+     for (i = 0; i < nb; ++i) {
+	  E xr = b[2*i], xi = b[2*i+1];
+          E wr = W[2*i], wi = W[2*i+1];
+          b[2*i] = xi * wr + xr * wi;
+          b[2*i+1] = xr * wr - xi * wi;
+     }
+
+     /* convolution: IFFT by FFT with real/imag input/output swapped */
+     {
+          plan_dft *cldf = (plan_dft *)ego->cldf;
+          cldf->apply(ego->cldf, b, b+1, b, b+1);
+     }
+
+     /* multiply output by conjugate bluestein sequence */
+     for (i = 0; i < n; ++i) {
+	  E xi = b[2*i], xr = b[2*i+1];
+          E wr = w[2*i], wi = w[2*i+1];
+          ro[i*os] = xr * wr + xi * wi;
+          io[i*os] = xi * wr - xr * wi;
+     }
+
+     X(ifree)(b);	  
+}
+
+static void awake(plan *ego_, enum wakefulness wakefulness)
+{
+     P *ego = (P *) ego_;
+
+     X(plan_awake)(ego->cldf, wakefulness);
+
+     switch (wakefulness) {
+	 case SLEEPY:
+	      X(ifree0)(ego->w); ego->w = 0;
+	      X(ifree0)(ego->W); ego->W = 0;
+	      break;
+	 default:
+	      A(!ego->w);
+	      mktwiddle(wakefulness, ego);
+	      break;
+     }
+}
+
+static int applicable(const solver *ego, const problem *p_, 
+		      const planner *plnr)
+{
+     const problem_dft *p = (const problem_dft *) p_;
+     UNUSED(ego);
+     return (1
+	     && p->sz->rnk == 1
+	     && p->vecsz->rnk == 0
+	     /* FIXME: allow other sizes */
+	     && X(is_prime)(p->sz->dims[0].n)
+
+	     /* FIXME: avoid infinite recursion of bluestein with itself.
+		This works because all factors in child problems are 2, 3, 5 */
+	     && p->sz->dims[0].n > 16
+
+	     && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > BLUESTEIN_MAX_SLOW)
+	  );
+}
+
+static void destroy(plan *ego_)
+{
+     P *ego = (P *) ego_;
+     X(plan_destroy_internal)(ego->cldf);
+}
+
+static void print(const plan *ego_, printer *p)
+{
+     const P *ego = (const P *)ego_;
+     p->print(p, "(dft-bluestein-%D/%D%(%p%))",
+              ego->n, ego->nb, ego->cldf);
+}
+
+static INT choose_transform_size(INT minsz)
+{
+     while (!X(factors_into_small_primes)(minsz))
+	  ++minsz;
+     return minsz;
+}
+
+static plan *mkplan(const solver *ego, const problem *p_, planner *plnr)
+{
+     const problem_dft *p = (const problem_dft *) p_;
+     P *pln;
+     INT n, nb;
+     plan *cldf = 0;
+     R *buf = (R *) 0;
+
+     static const plan_adt padt = {
+	  X(dft_solve), awake, print, destroy
+     };
+
+     if (!applicable(ego, p_, plnr))
+	  return (plan *) 0;
+
+     n = p->sz->dims[0].n;
+     nb = choose_transform_size(2 * n - 1);
+     buf = (R *) MALLOC(2 * nb * sizeof(R), BUFFERS);
+
+     cldf = X(mkplan_f_d)(plnr, 
+			  X(mkproblem_dft_d)(X(mktensor_1d)(nb, 2, 2),
+					     X(mktensor_1d)(1, 0, 0),
+					     buf, buf+1, 
+					     buf, buf+1),
+			  NO_SLOW, 0, 0);
+     if (!cldf) goto nada;
+
+     X(ifree)(buf);
+
+     pln = MKPLAN_DFT(P, &padt, apply);
+
+     pln->n = n;
+     pln->nb = nb;
+     pln->w = 0;
+     pln->W = 0;
+     pln->cldf = cldf;
+     pln->is = p->sz->dims[0].is;
+     pln->os = p->sz->dims[0].os;
+
+     X(ops_add)(&cldf->ops, &cldf->ops, &pln->super.super.ops);
+     pln->super.super.ops.add += 4 * n + 2 * nb;
+     pln->super.super.ops.mul += 8 * n + 4 * nb;
+     pln->super.super.ops.other += 6 * (n + nb);
+
+     return &(pln->super.super);
+
+ nada:
+     X(ifree0)(buf);
+     X(plan_destroy_internal)(cldf);
+     return (plan *)0;
+}
+
+
+static solver *mksolver(void)
+{
+     static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
+     S *slv = MKSOLVER(S, &sadt);
+     return &(slv->super);
+}
+
+void X(dft_bluestein_register)(planner *p)
+{
+     REGISTER_SOLVER(p, mksolver());
+}