Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.5/simd-support/simd-neon.h @ 42:2cd0e3b3e1fd
Current fftw source
author | Chris Cannam |
---|---|
date | Tue, 18 Oct 2016 13:40:26 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.5/simd-support/simd-neon.h Tue Oct 18 13:40:26 2016 +0100 @@ -0,0 +1,335 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * Double-precision support added by Romain Dolbeau. + * Romain Dolbeau hereby places his modifications in the public domain. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +#if !defined(FFTW_SINGLE) && !defined( __aarch64__) +#error "NEON only works in single precision on 32 bits ARM" +#endif +#if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD) +#error "NEON only works in single or double precision" +#endif + +#ifdef FFTW_SINGLE +# define DS(d,s) s /* single-precision option */ +# define SUFF(name) name ## _f32 +#else +# define DS(d,s) d /* double-precision option */ +# define SUFF(name) name ## _f64 +#endif + +/* define these unconditionally, because they are used by + taint.c which is compiled without neon */ +#define SIMD_SUFFIX _neon /* for renaming */ +#define VL DS(1,2) /* SIMD complex vector length */ +#define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2)) +#define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK + +#if defined(__GNUC__) && !defined(__ARM_NEON__) && !defined(__ARM_NEON) +#error "compiling simd-neon.h requires -mfpu=neon or equivalent" +#endif + +#include <arm_neon.h> + +/* FIXME: I am not sure whether this code assumes little-endian + ordering. VLIT may or may not be wrong for big-endian systems. */ +typedef DS(float64x2_t, float32x4_t) V; + +#ifdef FFTW_SINGLE +# define VLIT(x0, x1) {x0, x1, x0, x1} +#else +# define VLIT(x0, x1) {x0, x1} +#endif +#define LDK(x) x +#define DVK(var, val) const V var = VLIT(val, val) + +/* NEON has FMA, but a three-operand FMA is not too useful + for FFT purposes. We normally compute + + t0=a+b*c + t1=a-b*c + + In a three-operand instruction set this translates into + + t0=a + t0+=b*c + t1=a + t1-=b*c + + At least one move must be implemented, negating the advantage of + the FMA in the first place. At least some versions of gcc generate + both moves. So we are better off generating t=b*c;t0=a+t;t1=a-t;*/ +#if HAVE_FMA +#warning "--enable-fma on NEON is probably a bad idea (see source code)" +#endif + +#define VADD(a, b) SUFF(vaddq)(a, b) +#define VSUB(a, b) SUFF(vsubq)(a, b) +#define VMUL(a, b) SUFF(vmulq)(a, b) +#define VFMA(a, b, c) SUFF(vmlaq)(c, a, b) /* a*b+c */ +#define VFNMS(a, b, c) SUFF(vmlsq)(c, a, b) /* FNMS=-(a*b-c) in powerpc terminology; MLS=c-a*b + in ARM terminology */ +#define VFMS(a, b, c) VSUB(VMUL(a, b), c) /* FMS=a*b-c in powerpc terminology; no equivalent + arm instruction (?) */ + +#define STOREH(a, v) SUFF(vst1)((a), SUFF(vget_high)(v)) +#define STOREL(a, v) SUFF(vst1)((a), SUFF(vget_low)(v)) + +static inline V LDA(const R *x, INT ivs, const R *aligned_like) +{ + (void) aligned_like; /* UNUSED */ + return SUFF(vld1q)(x); +} +static inline void STA(R *x, V v, INT ovs, const R *aligned_like) +{ + (void) aligned_like; /* UNUSED */ + SUFF(vst1q)(x, v); +} + + +#ifdef FFTW_SINGLE +static inline V LD(const R *x, INT ivs, const R *aligned_like) +{ + (void) aligned_like; /* UNUSED */ + return SUFF(vcombine)(SUFF(vld1)(x), SUFF(vld1)((x + ivs))); +} +static inline void ST(R *x, V v, INT ovs, const R *aligned_like) +{ + (void) aligned_like; /* UNUSED */ + /* WARNING: the extra_iter hack depends upon store-low occurring + after store-high */ + STOREH(x + ovs, v); + STOREL(x,v); +} +#else /* !FFTW_SINGLE */ +# define LD LDA +# define ST STA +#endif + +/* 2x2 complex transpose and store */ +#define STM2 DS(STA,ST) +#define STN2(x, v0, v1, ovs) /* nop */ + +#ifdef FFTW_SINGLE +/* store and 4x4 real transpose */ +static inline void STM4(R *x, V v, INT ovs, const R *aligned_like) +{ + (void) aligned_like; /* UNUSED */ + SUFF(vst1_lane)((x) , SUFF(vget_low)(v), 0); + SUFF(vst1_lane)((x + ovs), SUFF(vget_low)(v), 1); + SUFF(vst1_lane)((x + 2 * ovs), SUFF(vget_high)(v), 0); + SUFF(vst1_lane)((x + 3 * ovs), SUFF(vget_high)(v), 1); +} +#define STN4(x, v0, v1, v2, v3, ovs) /* use STM4 */ +#else /* !FFTW_SINGLE */ +static inline void STM4(R *x, V v, INT ovs, const R *aligned_like) +{ + (void)aligned_like; /* UNUSED */ + STOREL(x, v); + STOREH(x + ovs, v); +} +# define STN4(x, v0, v1, v2, v3, ovs) /* nothing */ +#endif + +#ifdef FFTW_SINGLE +#define FLIP_RI(x) SUFF(vrev64q)(x) +#else +/* FIXME */ +#define FLIP_RI(x) SUFF(vcombine)(SUFF(vget_high)(x), SUFF(vget_low)(x)) +#endif + +static inline V VCONJ(V x) +{ +#ifdef FFTW_SINGLE + static const uint32x4_t pm = {0, 0x80000000u, 0, 0x80000000u}; + return vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(x), pm)); +#else + static const uint64x2_t pm = {0, 0x8000000000000000ull}; + /* Gcc-4.9.2 still does not include vreinterpretq_f64_u64, but simple + * casts generate the correct assembly. + */ + return (float64x2_t)(veorq_u64((uint64x2_t)(x), (uint64x2_t)(pm))); +#endif +} + +static inline V VBYI(V x) +{ + return FLIP_RI(VCONJ(x)); +} + +static inline V VFMAI(V b, V c) +{ + const V mp = VLIT(-1.0, 1.0); + return VFMA(FLIP_RI(b), mp, c); +} + +static inline V VFNMSI(V b, V c) +{ + const V mp = VLIT(-1.0, 1.0); + return VFNMS(FLIP_RI(b), mp, c); +} + +static inline V VFMACONJ(V b, V c) +{ + const V pm = VLIT(1.0, -1.0); + return VFMA(b, pm, c); +} + +static inline V VFNMSCONJ(V b, V c) +{ + const V pm = VLIT(1.0, -1.0); + return VFNMS(b, pm, c); +} + +static inline V VFMSCONJ(V b, V c) +{ + return VSUB(VCONJ(b), c); +} + +#ifdef FFTW_SINGLE +#if 1 +#define VEXTRACT_REIM(tr, ti, tx) \ +{ \ + tr = SUFF(vcombine)(SUFF(vdup_lane)(SUFF(vget_low)(tx), 0), \ + SUFF(vdup_lane)(SUFF(vget_high)(tx), 0)); \ + ti = SUFF(vcombine)(SUFF(vdup_lane)(SUFF(vget_low)(tx), 1), \ + SUFF(vdup_lane)(SUFF(vget_high)(tx), 1)); \ +} +#else +/* this alternative might be faster in an ideal world, but gcc likes + to spill VVV onto the stack */ +#define VEXTRACT_REIM(tr, ti, tx) \ +{ \ + float32x4x2_t vvv = SUFF(vtrnq)(tx, tx); \ + tr = vvv.val[0]; \ + ti = vvv.val[1]; \ +} +#endif +#else +#define VEXTRACT_REIM(tr, ti, tx) \ +{ \ + tr = SUFF(vtrn1q)(tx, tx); \ + ti = SUFF(vtrn2q)(tx, tx); \ +} +#endif + +static inline V VZMUL(V tx, V sr) +{ + V tr, ti; + VEXTRACT_REIM(tr, ti, tx); + tr = VMUL(sr, tr); + sr = VBYI(sr); + return VFMA(ti, sr, tr); +} + +static inline V VZMULJ(V tx, V sr) +{ + V tr, ti; + VEXTRACT_REIM(tr, ti, tx); + tr = VMUL(sr, tr); + sr = VBYI(sr); + return VFNMS(ti, sr, tr); +} + +static inline V VZMULI(V tx, V sr) +{ + V tr, ti; + VEXTRACT_REIM(tr, ti, tx); + ti = VMUL(ti, sr); + sr = VBYI(sr); + return VFMS(tr, sr, ti); +} + +static inline V VZMULIJ(V tx, V sr) +{ + V tr, ti; + VEXTRACT_REIM(tr, ti, tx); + ti = VMUL(ti, sr); + sr = VBYI(sr); + return VFMA(tr, sr, ti); +} + +/* twiddle storage #1: compact, slower */ +#ifdef FFTW_SINGLE +#define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x} +#else +#define VTW1(v,x) {TW_CEXP, v, x} +#endif +#define TWVL1 VL +static inline V BYTW1(const R *t, V sr) +{ + V tx = LDA(t, 2, 0); + return VZMUL(tx, sr); +} + +static inline V BYTWJ1(const R *t, V sr) +{ + V tx = LDA(t, 2, 0); + return VZMULJ(tx, sr); +} + +/* twiddle storage #2: twice the space, faster (when in cache) */ +#ifdef FFTW_SINGLE +# define VTW2(v,x) \ + {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \ + {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x} +#else +# define VTW2(v,x) \ + {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x} +#endif +#define TWVL2 (2 * VL) + +static inline V BYTW2(const R *t, V sr) +{ + V si = FLIP_RI(sr); + V tr = LDA(t, 2, 0), ti = LDA(t+2*VL, 2, 0); + return VFMA(ti, si, VMUL(tr, sr)); +} + +static inline V BYTWJ2(const R *t, V sr) +{ + V si = FLIP_RI(sr); + V tr = LDA(t, 2, 0), ti = LDA(t+2*VL, 2, 0); + return VFNMS(ti, si, VMUL(tr, sr)); +} + +/* twiddle storage #3 */ +#ifdef FFTW_SINGLE +# define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x} +#else +# define VTW3(v,x) {TW_CEXP, v, x} +#endif +# define TWVL3 (VL) + +/* twiddle storage for split arrays */ +#ifdef FFTW_SINGLE +# define VTWS(v,x) \ + {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \ + {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x} +#else +# define VTWS(v,x) \ + {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x} +#endif +#define TWVLS (2 * VL) + +#define VLEAVE() /* nothing */ + +#include "simd-common.h"