diff src/fftw-3.3.5/simd-support/simd-neon.h @ 42:2cd0e3b3e1fd

Current fftw source
author Chris Cannam
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.5/simd-support/simd-neon.h	Tue Oct 18 13:40:26 2016 +0100
@@ -0,0 +1,335 @@
+/*
+ * Copyright (c) 2003, 2007-14 Matteo Frigo
+ * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
+ *
+ * Double-precision support added by Romain Dolbeau.
+ * Romain Dolbeau hereby places his modifications in the public domain.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+#if !defined(FFTW_SINGLE) && !defined( __aarch64__)
+#error "NEON only works in single precision on 32 bits ARM"
+#endif
+#if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
+#error "NEON only works in single or double precision"
+#endif
+
+#ifdef FFTW_SINGLE
+#  define DS(d,s) s /* single-precision option */
+#  define SUFF(name) name ## _f32
+#else
+#  define DS(d,s) d /* double-precision option */
+#  define SUFF(name) name ## _f64
+#endif
+
+/* define these unconditionally, because they are used by
+   taint.c which is compiled without neon */
+#define SIMD_SUFFIX _neon	/* for renaming */
+#define VL DS(1,2)            /* SIMD complex vector length */
+#define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2))
+#define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
+
+#if defined(__GNUC__) && !defined(__ARM_NEON__) && !defined(__ARM_NEON)
+#error "compiling simd-neon.h requires -mfpu=neon or equivalent"
+#endif
+
+#include <arm_neon.h>
+
+/* FIXME: I am not sure whether this code assumes little-endian
+   ordering.  VLIT may or may not be wrong for big-endian systems. */
+typedef DS(float64x2_t, float32x4_t) V;
+
+#ifdef FFTW_SINGLE
+#  define VLIT(x0, x1) {x0, x1, x0, x1}
+#else
+#  define VLIT(x0, x1) {x0, x1}
+#endif
+#define LDK(x) x
+#define DVK(var, val) const V var = VLIT(val, val)
+
+/* NEON has FMA, but a three-operand FMA is not too useful
+   for FFT purposes.  We normally compute
+
+      t0=a+b*c
+      t1=a-b*c
+
+   In a three-operand instruction set this translates into
+
+      t0=a
+      t0+=b*c
+      t1=a
+      t1-=b*c
+
+   At least one move must be implemented, negating the advantage of
+   the FMA in the first place.  At least some versions of gcc generate
+   both moves.  So we are better off generating t=b*c;t0=a+t;t1=a-t;*/
+#if HAVE_FMA
+#warning "--enable-fma on NEON is probably a bad idea (see source code)"
+#endif
+
+#define VADD(a, b) SUFF(vaddq)(a, b)
+#define VSUB(a, b) SUFF(vsubq)(a, b)
+#define VMUL(a, b) SUFF(vmulq)(a, b)
+#define VFMA(a, b, c) SUFF(vmlaq)(c, a, b)	        /* a*b+c */
+#define VFNMS(a, b, c) SUFF(vmlsq)(c, a, b)	/* FNMS=-(a*b-c) in powerpc terminology; MLS=c-a*b
+						   in ARM terminology */
+#define VFMS(a, b, c) VSUB(VMUL(a, b), c)	/* FMS=a*b-c in powerpc terminology; no equivalent
+						   arm instruction (?) */
+
+#define STOREH(a, v) SUFF(vst1)((a), SUFF(vget_high)(v))
+#define STOREL(a, v) SUFF(vst1)((a), SUFF(vget_low)(v))
+
+static inline V LDA(const R *x, INT ivs, const R *aligned_like)
+{
+     (void) aligned_like;	/* UNUSED */
+     return SUFF(vld1q)(x);
+}
+static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
+{
+     (void) aligned_like;	/* UNUSED */
+     SUFF(vst1q)(x, v);
+}
+
+
+#ifdef FFTW_SINGLE
+static inline V LD(const R *x, INT ivs, const R *aligned_like)
+{
+     (void) aligned_like;	/* UNUSED */
+     return SUFF(vcombine)(SUFF(vld1)(x), SUFF(vld1)((x + ivs)));
+}
+static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
+{
+     (void) aligned_like;	/* UNUSED */
+     /* WARNING: the extra_iter hack depends upon store-low occurring
+	after store-high */
+     STOREH(x + ovs, v);
+     STOREL(x,v);
+}
+#else /* !FFTW_SINGLE */
+#  define LD LDA
+#  define ST STA
+#endif
+
+/* 2x2 complex transpose and store */
+#define STM2 DS(STA,ST)
+#define STN2(x, v0, v1, ovs) /* nop */
+
+#ifdef FFTW_SINGLE
+/* store and 4x4 real transpose */
+static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
+{
+     (void) aligned_like;	/* UNUSED */
+     SUFF(vst1_lane)((x)      , SUFF(vget_low)(v), 0);
+     SUFF(vst1_lane)((x + ovs), SUFF(vget_low)(v), 1);
+     SUFF(vst1_lane)((x + 2 * ovs), SUFF(vget_high)(v), 0);
+     SUFF(vst1_lane)((x + 3 * ovs), SUFF(vget_high)(v), 1);
+}
+#define STN4(x, v0, v1, v2, v3, ovs)	/* use STM4 */
+#else /* !FFTW_SINGLE */
+static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
+{
+     (void)aligned_like; /* UNUSED */
+     STOREL(x, v);
+     STOREH(x + ovs, v);
+}
+#  define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
+#endif
+
+#ifdef FFTW_SINGLE
+#define FLIP_RI(x) SUFF(vrev64q)(x)
+#else
+/* FIXME */
+#define FLIP_RI(x) SUFF(vcombine)(SUFF(vget_high)(x), SUFF(vget_low)(x))
+#endif
+
+static inline V VCONJ(V x)
+{
+#ifdef FFTW_SINGLE
+     static const uint32x4_t pm = {0, 0x80000000u, 0, 0x80000000u};
+     return vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(x), pm));
+#else
+    static const uint64x2_t pm = {0, 0x8000000000000000ull};
+    /* Gcc-4.9.2 still does not include vreinterpretq_f64_u64, but simple
+     * casts generate the correct assembly.
+     */
+    return (float64x2_t)(veorq_u64((uint64x2_t)(x), (uint64x2_t)(pm)));
+#endif
+}
+
+static inline V VBYI(V x)
+{
+     return FLIP_RI(VCONJ(x));
+}
+
+static inline V VFMAI(V b, V c)
+{
+     const V mp = VLIT(-1.0, 1.0);
+     return VFMA(FLIP_RI(b), mp, c);
+}
+
+static inline V VFNMSI(V b, V c)
+{
+     const V mp = VLIT(-1.0, 1.0);
+     return VFNMS(FLIP_RI(b), mp, c);
+}
+
+static inline V VFMACONJ(V b, V c)
+{
+     const V pm = VLIT(1.0, -1.0);
+     return VFMA(b, pm, c);
+}
+
+static inline V VFNMSCONJ(V b, V c)
+{
+     const V pm = VLIT(1.0, -1.0);
+     return VFNMS(b, pm, c);
+}
+
+static inline V VFMSCONJ(V b, V c)
+{
+     return VSUB(VCONJ(b), c);
+}
+
+#ifdef FFTW_SINGLE
+#if 1
+#define VEXTRACT_REIM(tr, ti, tx)                               \
+{                                                               \
+     tr = SUFF(vcombine)(SUFF(vdup_lane)(SUFF(vget_low)(tx), 0),      \
+                       SUFF(vdup_lane)(SUFF(vget_high)(tx), 0));    \
+     ti = SUFF(vcombine)(SUFF(vdup_lane)(SUFF(vget_low)(tx), 1),      \
+                       SUFF(vdup_lane)(SUFF(vget_high)(tx), 1));    \
+}
+#else
+/* this alternative might be faster in an ideal world, but gcc likes
+   to spill VVV onto the stack */
+#define VEXTRACT_REIM(tr, ti, tx)               \
+{                                               \
+     float32x4x2_t vvv = SUFF(vtrnq)(tx, tx);     \
+     tr = vvv.val[0];                           \
+     ti = vvv.val[1];                           \
+}
+#endif
+#else
+#define VEXTRACT_REIM(tr, ti, tx)                               \
+{                                                               \
+  tr = SUFF(vtrn1q)(tx, tx);                                    \
+  ti = SUFF(vtrn2q)(tx, tx);                                    \
+}
+#endif
+
+static inline V VZMUL(V tx, V sr)
+{
+     V tr, ti;
+     VEXTRACT_REIM(tr, ti, tx);
+     tr = VMUL(sr, tr);
+     sr = VBYI(sr);
+     return VFMA(ti, sr, tr);
+}
+
+static inline V VZMULJ(V tx, V sr)
+{
+     V tr, ti;
+     VEXTRACT_REIM(tr, ti, tx);
+     tr = VMUL(sr, tr);
+     sr = VBYI(sr);
+     return VFNMS(ti, sr, tr);
+}
+
+static inline V VZMULI(V tx, V sr)
+{
+     V tr, ti;
+     VEXTRACT_REIM(tr, ti, tx);
+     ti = VMUL(ti, sr);
+     sr = VBYI(sr);
+     return VFMS(tr, sr, ti);
+}
+
+static inline V VZMULIJ(V tx, V sr)
+{
+     V tr, ti;
+     VEXTRACT_REIM(tr, ti, tx);
+     ti = VMUL(ti, sr);
+     sr = VBYI(sr);
+     return VFMA(tr, sr, ti);
+}
+
+/* twiddle storage #1: compact, slower */
+#ifdef FFTW_SINGLE
+#define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
+#else
+#define VTW1(v,x) {TW_CEXP, v, x}
+#endif
+#define TWVL1 VL
+static inline V BYTW1(const R *t, V sr)
+{
+     V tx = LDA(t, 2, 0);
+     return VZMUL(tx, sr);
+}
+
+static inline V BYTWJ1(const R *t, V sr)
+{
+     V tx = LDA(t, 2, 0);
+     return VZMULJ(tx, sr);
+}
+
+/* twiddle storage #2: twice the space, faster (when in cache) */
+#ifdef FFTW_SINGLE
+#  define VTW2(v,x)							\
+  {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x},	\
+  {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
+#else
+#  define VTW2(v,x)							\
+  {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
+#endif
+#define TWVL2 (2 * VL)
+
+static inline V BYTW2(const R *t, V sr)
+{
+     V si = FLIP_RI(sr);
+     V tr = LDA(t, 2, 0), ti = LDA(t+2*VL, 2, 0);
+     return VFMA(ti, si, VMUL(tr, sr));
+}
+
+static inline V BYTWJ2(const R *t, V sr)
+{
+     V si = FLIP_RI(sr);
+     V tr = LDA(t, 2, 0), ti = LDA(t+2*VL, 2, 0);
+     return VFNMS(ti, si, VMUL(tr, sr));
+}
+
+/* twiddle storage #3 */
+#ifdef FFTW_SINGLE
+#  define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
+#else
+#  define VTW3(v,x) {TW_CEXP, v, x}
+#endif
+#  define TWVL3 (VL)
+
+/* twiddle storage for split arrays */
+#ifdef FFTW_SINGLE
+#  define VTWS(v,x)							  \
+    {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
+    {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
+#else
+#  define VTWS(v,x)							  \
+    {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
+#endif
+#define TWVLS (2 * VL)
+
+#define VLEAVE()		/* nothing */
+
+#include "simd-common.h"