Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.5/simd-support/simd-generic128.h @ 42:2cd0e3b3e1fd
Current fftw source
author | Chris Cannam |
---|---|
date | Tue, 18 Oct 2016 13:40:26 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.5/simd-support/simd-generic128.h Tue Oct 18 13:40:26 2016 +0100 @@ -0,0 +1,288 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * Generic128d added by Romain Dolbeau, and turned into simd-generic128.h + * with single & double precision by Erik Lindahl. + * Romain Dolbeau hereby places his modifications in the public domain. + * Erik Lindahl hereby places his modifications in the public domain. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + + +#if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD) +# error "Generic simd128 only works in single or double precision" +#endif + +#define SIMD_SUFFIX _generic_simd128 /* for renaming */ + +#ifdef FFTW_SINGLE +# define DS(d,s) s /* single-precision option */ +# define VDUPL(x) (V){x[0],x[0],x[2],x[2]} +# define VDUPH(x) (V){x[1],x[1],x[3],x[3]} +# define DVK(var, val) V var = {val,val,val,val} +#else +# define DS(d,s) d /* double-precision option */ +# define VDUPL(x) (V){x[0],x[0]} +# define VDUPH(x) (V){x[1],x[1]} +# define DVK(var, val) V var = {val, val} +#endif + +#define VL DS(1,2) /* SIMD vector length, in term of complex numbers */ +#define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2)) +#define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK + +typedef DS(double,float) V __attribute__ ((vector_size(16))); + +#define VADD(a,b) ((a)+(b)) +#define VSUB(a,b) ((a)-(b)) +#define VMUL(a,b) ((a)*(b)) + + +#define LDK(x) x + +static inline V LDA(const R *x, INT ivs, const R *aligned_like) +{ + (void)aligned_like; /* UNUSED */ + (void)ivs; /* UNUSED */ + return *(const V *)x; +} + +static inline void STA(R *x, V v, INT ovs, const R *aligned_like) +{ + (void)aligned_like; /* UNUSED */ + (void)ovs; /* UNUSED */ + *(V *)x = v; +} + +static inline V LD(const R *x, INT ivs, const R *aligned_like) +{ + (void)aligned_like; /* UNUSED */ + V res; + res[0] = x[0]; + res[1] = x[1]; +#ifdef FFTW_SINGLE + res[2] = x[ivs]; + res[3] = x[ivs+1]; +#endif + return res; +} + +#ifdef FFTW_SINGLE +/* ST has to be separate due to the storage hack requiring reverse order */ +static inline void ST(R *x, V v, INT ovs, const R *aligned_like) +{ + (void)aligned_like; /* UNUSED */ + (void)ovs; /* UNUSED */ + *(x + ovs ) = v[2]; + *(x + ovs + 1) = v[3]; + *(x ) = v[0]; + *(x + 1) = v[1]; +} +#else +/* FFTW_DOUBLE */ +# define ST STA +#endif + +#ifdef FFTW_SINGLE +#define STM2 ST +#define STN2(x, v0, v1, ovs) /* nop */ + +static inline void STN4(R *x, V v0, V v1, V v2, V v3, INT ovs) +{ + *(x ) = v0[0]; + *(x + 1) = v1[0]; + *(x + 2) = v2[0]; + *(x + 3) = v3[0]; + *(x + ovs ) = v0[1]; + *(x + ovs + 1) = v1[1]; + *(x + ovs + 2) = v2[1]; + *(x + ovs + 3) = v3[1]; + *(x + 2 * ovs ) = v0[2]; + *(x + 2 * ovs + 1) = v1[2]; + *(x + 2 * ovs + 2) = v2[2]; + *(x + 2 * ovs + 3) = v3[2]; + *(x + 3 * ovs ) = v0[3]; + *(x + 3 * ovs + 1) = v1[3]; + *(x + 3 * ovs + 2) = v2[3]; + *(x + 3 * ovs + 3) = v3[3]; +} +#define STM4(x, v, ovs, aligned_like) /* no-op */ + + +#else +/* FFTW_DOUBLE */ + +#define STM2 STA +#define STN2(x, v0, v1, ovs) /* nop */ + +static inline void STM4(R *x, V v, INT ovs, const R *aligned_like) +{ + (void)aligned_like; /* UNUSED */ + *(x) = v[0]; + *(x+ovs) = v[1]; +} +# define STN4(x, v0, v1, v2, v3, ovs) /* nothing */ +#endif + + +static inline V FLIP_RI(V x) +{ +#ifdef FFTW_SINGLE + return (V){x[1],x[0],x[3],x[2]}; +#else + return (V){x[1],x[0]}; +#endif +} + +static inline V VCONJ(V x) +{ +#ifdef FFTW_SINGLE + return (V){x[0],-x[1],x[2],-x[3]}; +#else + return (V){x[0],-x[1]}; +#endif +} + +static inline V VBYI(V x) +{ + x = VCONJ(x); + x = FLIP_RI(x); + return x; +} + +/* FMA support */ +#define VFMA(a, b, c) VADD(c, VMUL(a, b)) +#define VFNMS(a, b, c) VSUB(c, VMUL(a, b)) +#define VFMS(a, b, c) VSUB(VMUL(a, b), c) +#define VFMAI(b, c) VADD(c, VBYI(b)) +#define VFNMSI(b, c) VSUB(c, VBYI(b)) +#define VFMACONJ(b,c) VADD(VCONJ(b),c) +#define VFMSCONJ(b,c) VSUB(VCONJ(b),c) +#define VFNMSCONJ(b,c) VSUB(c, VCONJ(b)) + +static inline V VZMUL(V tx, V sr) +{ + V tr = VDUPL(tx); + V ti = VDUPH(tx); + tr = VMUL(sr, tr); + sr = VBYI(sr); + return VFMA(ti, sr, tr); +} + +static inline V VZMULJ(V tx, V sr) +{ + V tr = VDUPL(tx); + V ti = VDUPH(tx); + tr = VMUL(sr, tr); + sr = VBYI(sr); + return VFNMS(ti, sr, tr); +} + +static inline V VZMULI(V tx, V sr) +{ + V tr = VDUPL(tx); + V ti = VDUPH(tx); + ti = VMUL(ti, sr); + sr = VBYI(sr); + return VFMS(tr, sr, ti); +} + +static inline V VZMULIJ(V tx, V sr) +{ + V tr = VDUPL(tx); + V ti = VDUPH(tx); + ti = VMUL(ti, sr); + sr = VBYI(sr); + return VFMA(tr, sr, ti); +} + +/* twiddle storage #1: compact, slower */ +#ifdef FFTW_SINGLE +# define VTW1(v,x) \ + {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x} +static inline V BYTW1(const R *t, V sr) +{ + return VZMUL(LDA(t, 2, t), sr); +} +static inline V BYTWJ1(const R *t, V sr) +{ + return VZMULJ(LDA(t, 2, t), sr); +} +#else /* !FFTW_SINGLE */ +# define VTW1(v,x) {TW_CEXP, v, x} +static inline V BYTW1(const R *t, V sr) +{ + V tx = LD(t, 1, t); + return VZMUL(tx, sr); +} +static inline V BYTWJ1(const R *t, V sr) +{ + V tx = LD(t, 1, t); + return VZMULJ(tx, sr); +} +#endif +#define TWVL1 (VL) + +/* twiddle storage #2: twice the space, faster (when in cache) */ +#ifdef FFTW_SINGLE +# define VTW2(v,x) \ + {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \ + {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x} +#else /* !FFTW_SINGLE */ +# define VTW2(v,x) \ + {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x} +#endif +#define TWVL2 (2 * VL) +static inline V BYTW2(const R *t, V sr) +{ + const V *twp = (const V *)t; + V si = FLIP_RI(sr); + V tr = twp[0], ti = twp[1]; + return VFMA(tr, sr, VMUL(ti, si)); +} +static inline V BYTWJ2(const R *t, V sr) +{ + const V *twp = (const V *)t; + V si = FLIP_RI(sr); + V tr = twp[0], ti = twp[1]; + return VFNMS(ti, si, VMUL(tr, sr)); +} + +/* twiddle storage #3 */ +#ifdef FFTW_SINGLE +# define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x} +# define TWVL3 (VL) +#else +# define VTW3(v,x) VTW1(v,x) +# define TWVL3 TWVL1 +#endif + +/* twiddle storage for split arrays */ +#ifdef FFTW_SINGLE +# define VTWS(v,x) \ + {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \ + {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x} +#else +# define VTWS(v,x) \ + {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x} +#endif +#define TWVLS (2 * VL) + +#define VLEAVE() /* nothing */ + +#include "simd-common.h"