diff src/fftw-3.3.5/simd-support/simd-generic128.h @ 42:2cd0e3b3e1fd

Current fftw source
author Chris Cannam
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.5/simd-support/simd-generic128.h	Tue Oct 18 13:40:26 2016 +0100
@@ -0,0 +1,288 @@
+/*
+ * Copyright (c) 2003, 2007-14 Matteo Frigo
+ * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
+ *
+ * Generic128d added by Romain Dolbeau, and turned into simd-generic128.h
+ * with single & double precision by Erik Lindahl.
+ * Romain Dolbeau hereby places his modifications in the public domain.
+ * Erik Lindahl hereby places his modifications in the public domain.
+ * 
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+
+#if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
+#  error "Generic simd128 only works in single or double precision"
+#endif
+
+#define SIMD_SUFFIX  _generic_simd128  /* for renaming */
+
+#ifdef FFTW_SINGLE
+#  define DS(d,s) s /* single-precision option */
+#  define VDUPL(x) (V){x[0],x[0],x[2],x[2]}
+#  define VDUPH(x) (V){x[1],x[1],x[3],x[3]}
+#  define DVK(var, val) V var = {val,val,val,val}
+#else
+#  define DS(d,s) d /* double-precision option */
+#  define VDUPL(x) (V){x[0],x[0]}
+#  define VDUPH(x) (V){x[1],x[1]}
+#  define DVK(var, val) V var = {val, val}
+#endif
+
+#define VL DS(1,2)         /* SIMD vector length, in term of complex numbers */
+#define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2))
+#define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
+
+typedef DS(double,float) V __attribute__ ((vector_size(16)));
+
+#define VADD(a,b) ((a)+(b))
+#define VSUB(a,b) ((a)-(b))
+#define VMUL(a,b) ((a)*(b))
+
+
+#define LDK(x) x
+
+static inline V LDA(const R *x, INT ivs, const R *aligned_like)
+{
+     (void)aligned_like; /* UNUSED */
+     (void)ivs; /* UNUSED */
+     return *(const V *)x;
+}
+
+static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
+{
+     (void)aligned_like; /* UNUSED */
+     (void)ovs; /* UNUSED */
+     *(V *)x = v;
+}
+
+static inline V LD(const R *x, INT ivs, const R *aligned_like)
+{
+    (void)aligned_like; /* UNUSED */
+    V res;
+    res[0] = x[0];
+    res[1] = x[1];
+#ifdef FFTW_SINGLE
+    res[2] = x[ivs];
+    res[3] = x[ivs+1];
+#endif
+    return res;
+}
+
+#ifdef FFTW_SINGLE
+/* ST has to be separate due to the storage hack requiring reverse order */
+static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
+{
+    (void)aligned_like; /* UNUSED */
+    (void)ovs; /* UNUSED */
+    *(x + ovs    ) = v[2];
+    *(x + ovs + 1) = v[3];
+    *(x    ) = v[0];
+    *(x + 1) = v[1];
+}
+#else
+/* FFTW_DOUBLE */
+#  define ST STA
+#endif
+
+#ifdef FFTW_SINGLE
+#define STM2 ST
+#define STN2(x, v0, v1, ovs) /* nop */
+
+static inline void STN4(R *x, V v0, V v1, V v2, V v3, INT ovs)
+{
+    *(x              ) = v0[0];
+    *(x           + 1) = v1[0];
+    *(x           + 2) = v2[0];
+    *(x           + 3) = v3[0];
+    *(x     + ovs    ) = v0[1];
+    *(x     + ovs + 1) = v1[1];
+    *(x     + ovs + 2) = v2[1];
+    *(x     + ovs + 3) = v3[1];
+    *(x + 2 * ovs    ) = v0[2];
+    *(x + 2 * ovs + 1) = v1[2];
+    *(x + 2 * ovs + 2) = v2[2];
+    *(x + 2 * ovs + 3) = v3[2];
+    *(x + 3 * ovs    ) = v0[3];
+    *(x + 3 * ovs + 1) = v1[3];
+    *(x + 3 * ovs + 2) = v2[3];
+    *(x + 3 * ovs + 3) = v3[3];
+}
+#define STM4(x, v, ovs, aligned_like) /* no-op */
+
+
+#else
+/* FFTW_DOUBLE */
+
+#define STM2 STA
+#define STN2(x, v0, v1, ovs) /* nop */
+
+static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
+{
+     (void)aligned_like; /* UNUSED */
+     *(x) = v[0];
+     *(x+ovs) = v[1];
+}
+#  define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
+#endif
+
+
+static inline V FLIP_RI(V x)
+{
+#ifdef FFTW_SINGLE
+    return (V){x[1],x[0],x[3],x[2]};
+#else
+    return (V){x[1],x[0]};
+#endif
+}
+
+static inline V VCONJ(V x)
+{
+#ifdef FFTW_SINGLE
+    return (V){x[0],-x[1],x[2],-x[3]};
+#else
+    return (V){x[0],-x[1]};
+#endif
+}
+
+static inline V VBYI(V x)
+{
+     x = VCONJ(x);
+     x = FLIP_RI(x);
+     return x;
+}
+
+/* FMA support */
+#define VFMA(a, b, c) VADD(c, VMUL(a, b))
+#define VFNMS(a, b, c) VSUB(c, VMUL(a, b))
+#define VFMS(a, b, c) VSUB(VMUL(a, b), c)
+#define VFMAI(b, c) VADD(c, VBYI(b))
+#define VFNMSI(b, c) VSUB(c, VBYI(b))
+#define VFMACONJ(b,c)  VADD(VCONJ(b),c)
+#define VFMSCONJ(b,c)  VSUB(VCONJ(b),c)
+#define VFNMSCONJ(b,c) VSUB(c, VCONJ(b))
+
+static inline V VZMUL(V tx, V sr)
+{
+     V tr = VDUPL(tx);
+     V ti = VDUPH(tx);
+     tr = VMUL(sr, tr);
+     sr = VBYI(sr);
+     return VFMA(ti, sr, tr);
+}
+
+static inline V VZMULJ(V tx, V sr)
+{
+     V tr = VDUPL(tx);
+     V ti = VDUPH(tx);
+     tr = VMUL(sr, tr);
+     sr = VBYI(sr);
+     return VFNMS(ti, sr, tr);
+}
+
+static inline V VZMULI(V tx, V sr)
+{
+     V tr = VDUPL(tx);
+     V ti = VDUPH(tx);
+     ti = VMUL(ti, sr);
+     sr = VBYI(sr);
+     return VFMS(tr, sr, ti);
+}
+
+static inline V VZMULIJ(V tx, V sr)
+{
+     V tr = VDUPL(tx);
+     V ti = VDUPH(tx);
+     ti = VMUL(ti, sr);
+     sr = VBYI(sr);
+     return VFMA(tr, sr, ti);
+}
+
+/* twiddle storage #1: compact, slower */
+#ifdef FFTW_SINGLE
+#  define VTW1(v,x)  \
+  {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
+static inline V BYTW1(const R *t, V sr)
+{
+    return VZMUL(LDA(t, 2, t), sr);
+}
+static inline V BYTWJ1(const R *t, V sr)
+{
+    return VZMULJ(LDA(t, 2, t), sr);
+}
+#else /* !FFTW_SINGLE */
+#  define VTW1(v,x) {TW_CEXP, v, x}
+static inline V BYTW1(const R *t, V sr)
+{
+     V tx = LD(t, 1, t);
+     return VZMUL(tx, sr);
+}
+static inline V BYTWJ1(const R *t, V sr)
+{
+     V tx = LD(t, 1, t);
+     return VZMULJ(tx, sr);
+}
+#endif
+#define TWVL1 (VL)
+
+/* twiddle storage #2: twice the space, faster (when in cache) */
+#ifdef FFTW_SINGLE
+#  define VTW2(v,x)                                                     \
+  {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x},   \
+  {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
+#else /* !FFTW_SINGLE */
+#  define VTW2(v,x)                                                     \
+  {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
+#endif
+#define TWVL2 (2 * VL)
+static inline V BYTW2(const R *t, V sr)
+{
+     const V *twp = (const V *)t;
+     V si = FLIP_RI(sr);
+     V tr = twp[0], ti = twp[1];
+     return VFMA(tr, sr, VMUL(ti, si));
+}
+static inline V BYTWJ2(const R *t, V sr)
+{
+     const V *twp = (const V *)t;
+     V si = FLIP_RI(sr);
+     V tr = twp[0], ti = twp[1];
+     return VFNMS(ti, si, VMUL(tr, sr));
+}
+
+/* twiddle storage #3 */
+#ifdef FFTW_SINGLE
+#  define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
+#  define TWVL3 (VL)
+#else
+#  define VTW3(v,x) VTW1(v,x)
+#  define TWVL3 TWVL1
+#endif
+
+/* twiddle storage for split arrays */
+#ifdef FFTW_SINGLE
+#  define VTWS(v,x)                                                       \
+    {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
+    {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
+#else
+#  define VTWS(v,x)                                                       \
+    {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
+#endif
+#define TWVLS (2 * VL)
+
+#define VLEAVE() /* nothing */
+
+#include "simd-common.h"