diff src/fftw-3.3.5/simd-support/simd-avx-128-fma.h @ 42:2cd0e3b3e1fd

Current fftw source
author Chris Cannam
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.5/simd-support/simd-avx-128-fma.h	Tue Oct 18 13:40:26 2016 +0100
@@ -0,0 +1,312 @@
+/*
+ * Copyright (c) 2003, 2007-14 Matteo Frigo
+ * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
+ *
+ * 128-bit AVX support by Erik Lindahl, 2015.
+ * Erik Lindahl hereby places his modifications in the public domain.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+#if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
+#error "AVX only works in single or double precision"
+#endif
+
+#ifdef FFTW_SINGLE
+#  define DS(d,s) s /* single-precision option */
+#  define SUFF(name) name ## s
+#else
+#  define DS(d,s) d /* double-precision option */
+#  define SUFF(name) name ## d
+#endif
+
+#define SIMD_SUFFIX  _avx_128_fma  /* for renaming */
+#define VL DS(1,2)         /* SIMD vector length, in term of complex numbers */
+#define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2))
+#define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
+
+#ifdef _MSC_VER
+#ifndef inline
+#define inline __inline
+#endif
+#endif
+
+#include <immintrin.h>
+#ifdef _MSC_VER
+#    include <intrin.h>
+#elif defined (__GNUC__)
+#    include <x86intrin.h>
+#endif
+
+#if !(defined(__AVX__) && defined(__FMA4__)) /* sanity check */
+#error "compiling simd-avx-128-fma.h without -mavx or -mfma4"
+#endif
+
+typedef DS(__m128d,__m128) V;
+#define VADD SUFF(_mm_add_p)
+#define VSUB SUFF(_mm_sub_p)
+#define VMUL SUFF(_mm_mul_p)
+#define VXOR SUFF(_mm_xor_p)
+#define SHUF SUFF(_mm_shuffle_p)
+#define VPERM1 SUFF(_mm_permute_p)
+#define UNPCKL SUFF(_mm_unpacklo_p)
+#define UNPCKH SUFF(_mm_unpackhi_p)
+
+#define SHUFVALS(fp0,fp1,fp2,fp3) \
+   (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
+
+#define VDUPL(x) DS(_mm_permute_pd(x,0), _mm_moveldup_ps(x))
+#define VDUPH(x) DS(_mm_permute_pd(x,3), _mm_movehdup_ps(x))
+#define LOADH(addr, val) _mm_loadh_pi(val, (const __m64 *)(addr))
+#define LOADL(addr, val) _mm_loadl_pi(val, (const __m64 *)(addr))
+#define STOREH(a, v) DS(_mm_storeh_pd(a, v), _mm_storeh_pi((__m64 *)(a), v))
+#define STOREL(a, v) DS(_mm_storel_pd(a, v), _mm_storel_pi((__m64 *)(a), v))
+
+#define VLIT(x0, x1) DS(_mm_set_pd(x0, x1), _mm_set_ps(x0, x1, x0, x1))
+#define DVK(var, val) V var = VLIT(val, val)
+#define LDK(x) x
+
+static inline V LDA(const R *x, INT ivs, const R *aligned_like)
+{
+     (void)aligned_like; /* UNUSED */
+     (void)ivs; /* UNUSED */
+     return *(const V *)x;
+}
+
+static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
+{
+     (void)aligned_like; /* UNUSED */
+     (void)ovs; /* UNUSED */
+     *(V *)x = v;
+}
+
+#ifdef FFTW_SINGLE
+
+static inline V LD(const R *x, INT ivs, const R *aligned_like)
+{
+    V var;
+#if defined(__ICC) || (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ > 8)
+    var = LOADL(x, SUFF(_mm_undefined_p)());
+    var = LOADH(x + ivs, var);
+#else
+    var = LOADL(x, var);
+    var = LOADH(x + ivs, var);
+#endif
+    return var;
+}
+
+#  ifdef _MSC_VER
+#    pragma warning(default : 4700)
+#    pragma runtime_checks("u", restore)
+#  endif
+
+static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
+{
+     (void)aligned_like; /* UNUSED */
+     /* WARNING: the extra_iter hack depends upon STOREL occurring
+	after STOREH */
+     STOREH(x + ovs, v);
+     STOREL(x, v);
+}
+
+#else /* ! FFTW_SINGLE */
+#  define LD LDA
+#  define ST STA
+#endif
+
+#define STM2 DS(STA,ST)
+#define STN2(x, v0, v1, ovs) /* nop */
+
+#ifdef FFTW_SINGLE
+#  define STM4(x, v, ovs, aligned_like) /* no-op */
+/* STN4 is a macro, not a function, thanks to Visual C++ developers
+   deciding "it would be infrequent that people would want to pass more
+   than 3 [__m128 parameters] by value."  3 parameters ought to be enough
+   for anybody. */
+#  define STN4(x, v0, v1, v2, v3, ovs)			\
+{							\
+     V xxx0, xxx1, xxx2, xxx3;				\
+     xxx0 = UNPCKL(v0, v2);				\
+     xxx1 = UNPCKH(v0, v2);				\
+     xxx2 = UNPCKL(v1, v3);				\
+     xxx3 = UNPCKH(v1, v3);				\
+     STA(x, UNPCKL(xxx0, xxx2), 0, 0);			\
+     STA(x + ovs, UNPCKH(xxx0, xxx2), 0, 0);		\
+     STA(x + 2 * ovs, UNPCKL(xxx1, xxx3), 0, 0);	\
+     STA(x + 3 * ovs, UNPCKH(xxx1, xxx3), 0, 0);	\
+}
+#else /* !FFTW_SINGLE */
+static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
+{
+     (void)aligned_like; /* UNUSED */
+     STOREL(x, v);
+     STOREH(x + ovs, v);
+}
+#  define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
+#endif
+
+static inline V FLIP_RI(V x)
+{
+  return VPERM1(x, DS(1, SHUFVALS(1, 0, 3, 2)));
+}
+
+
+static inline V VCONJ(V x)
+{
+  V pmpm = VLIT(-0.0, 0.0);
+  return VXOR(pmpm, x);
+}
+
+static inline V VBYI(V x)
+{
+     x = VCONJ(x);
+     x = FLIP_RI(x);
+     return x;
+}
+
+/* FMA support */
+#define VFMA(a, b, c)  SUFF(_mm_macc_p)(a,b,c)
+#define VFNMS(a, b, c) SUFF(_mm_nmacc_p)(a,b,c)
+#define VFMS(a, b, c)  SUFF(_mm_msub_p)(a,b,c)
+#define VFMAI(b, c)  SUFF(_mm_addsub_p)(c,FLIP_RI(b))
+#define VFNMSI(b, c) VSUB(c, VBYI(b))
+#define VFMACONJ(b,c)  VADD(VCONJ(b),c)
+#define VFMSCONJ(b,c)  VSUB(VCONJ(b),c)
+#define VFNMSCONJ(b,c) SUFF(_mm_addsub_p)(c,b)
+
+static inline V VZMUL(V tx, V sr)
+{
+    V tr = VDUPL(tx);
+    V ti = VDUPH(tx);
+    tr = VMUL(tr, sr);
+    ti = VMUL(ti, FLIP_RI(sr));
+    return SUFF(_mm_addsub_p)(tr,ti);
+}
+
+static inline V VZMULJ(V tx, V sr)
+{
+     V tr = VDUPL(tx);
+     V ti = VDUPH(tx);
+     tr = VMUL(tr, sr);
+     sr = VBYI(sr);
+     return VFNMS(ti, sr, tr);
+}
+
+static inline V VZMULI(V tx, V sr)
+{
+     V tr = VDUPL(tx);
+     V ti = VDUPH(tx);
+     ti = VMUL(ti, sr);
+     sr = VBYI(sr);
+     return VFMS(tr, sr, ti);
+}
+
+static inline V VZMULIJ(V tx, V sr)
+{
+    V tr = VDUPL(tx);
+    V ti = VDUPH(tx);
+    ti = VMUL(ti, sr);
+    tr = VMUL(tr, FLIP_RI(sr));
+    return SUFF(_mm_addsub_p)(ti,tr);
+}
+
+/* twiddle storage #1: compact, slower */
+#ifdef FFTW_SINGLE
+#  define VTW1(v,x)  \
+  {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
+static inline V BYTW1(const R *t, V sr)
+{
+    const V *twp = (const V *)t;
+    V tx = twp[0];
+    V tr = UNPCKL(tx, tx);
+    V ti = UNPCKH(tx, tx);
+    tr = VMUL(tr, sr);
+    ti = VMUL(ti, FLIP_RI(sr));
+    return SUFF(_mm_addsub_p)(tr,ti);
+}
+static inline V BYTWJ1(const R *t, V sr)
+{
+    const V *twp = (const V *)t;
+    V tx = twp[0];
+    V tr = UNPCKL(tx, tx);
+    V ti = UNPCKH(tx, tx);
+    tr = VMUL(tr, sr);
+    sr = VBYI(sr);
+    return VFNMS(ti, sr, tr);
+}
+#else /* !FFTW_SINGLE */
+#  define VTW1(v,x) {TW_CEXP, v, x}
+static inline V BYTW1(const R *t, V sr)
+{
+     V tx = LD(t, 1, t);
+     return VZMUL(tx, sr);
+}
+static inline V BYTWJ1(const R *t, V sr)
+{
+     V tx = LD(t, 1, t);
+     return VZMULJ(tx, sr);
+}
+#endif
+#define TWVL1 (VL)
+
+/* twiddle storage #2: twice the space, faster (when in cache) */
+#ifdef FFTW_SINGLE
+#  define VTW2(v,x)							\
+  {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x},	\
+  {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
+#else /* !FFTW_SINGLE */
+#  define VTW2(v,x)							\
+  {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
+#endif
+#define TWVL2 (2 * VL)
+static inline V BYTW2(const R *t, V sr)
+{
+     const V *twp = (const V *)t;
+     V si = FLIP_RI(sr);
+     V tr = twp[0], ti = twp[1];
+     return VFMA(tr, sr, VMUL(ti, si));
+}
+static inline V BYTWJ2(const R *t, V sr)
+{
+     const V *twp = (const V *)t;
+     V si = FLIP_RI(sr);
+     V tr = twp[0], ti = twp[1];
+     return VFNMS(ti, si, VMUL(tr, sr));
+}
+
+/* twiddle storage #3 */
+#ifdef FFTW_SINGLE
+#  define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
+#  define TWVL3 (VL)
+#else
+#  define VTW3(v,x) VTW1(v,x)
+#  define TWVL3 TWVL1
+#endif
+
+/* twiddle storage for split arrays */
+#ifdef FFTW_SINGLE
+#  define VTWS(v,x)							  \
+    {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
+    {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
+#else
+#  define VTWS(v,x)							  \
+    {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
+#endif
+#define TWVLS (2 * VL)
+
+#define VLEAVE() /* nothing */
+
+#include "simd-common.h"