Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.5/rdft/simd/common/hc2cfdftv_16.c @ 42:2cd0e3b3e1fd
Current fftw source
author | Chris Cannam |
---|---|
date | Tue, 18 Oct 2016 13:40:26 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.5/rdft/simd/common/hc2cfdftv_16.c Tue Oct 18 13:40:26 2016 +0100 @@ -0,0 +1,432 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sat Jul 30 16:52:40 EDT 2016 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 16 -dit -name hc2cfdftv_16 -include hc2cfv.h */ + +/* + * This function contains 103 FP additions, 96 FP multiplications, + * (or, 53 additions, 46 multiplications, 50 fused multiply/add), + * 92 stack variables, 4 constants, and 32 memory accesses + */ +#include "hc2cfv.h" + +static void hc2cfdftv_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + DVK(KP923879532, +0.923879532511286756128183189396788286822416626); + DVK(KP707106781, +0.707106781186547524400844362104849039284835938); + DVK(KP414213562, +0.414213562373095048801688724209698078569671875); + { + INT m; + for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 30)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(64, rs)) { + V T8, Tc, TQ, TZ, T1J, T1x, T12, TH, T1I, T1q, Tp, TJ, Te, Tf, Td; + V TN, Tj, Tk, Ti, TK, Tg, TO, Tl, TL, T1r, Th, TR, T1y, T1s, Tq; + V TM, T1z, T1N, T1t, T10, Tr, T13, TS, T1K, T1A, T1E, T1u, T1f, T11, T1c; + V Ts, T1d, T14, T1g, TT; + { + V T3, Tw, TF, TW, Tz, TA, Ty, TX, T7, Tu, T1, T2, Tv, TD, TE; + V TC, TV, T5, T6, T4, Tt, TB, TY, T1o, T1v, Tx, Ta, Tb, T9, TP; + V T1w, TG, T1p, Tn, To, Tm, TI; + T1 = LD(&(Rp[0]), ms, &(Rp[0])); + T2 = LD(&(Rm[0]), -ms, &(Rm[0])); + Tv = LDW(&(W[0])); + TD = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); + TE = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); + TC = LDW(&(W[TWVL * 8])); + TV = LDW(&(W[TWVL * 6])); + T5 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); + T6 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); + T3 = VFMACONJ(T2, T1); + Tw = VZMULIJ(Tv, VFNMSCONJ(T2, T1)); + T4 = LDW(&(W[TWVL * 14])); + Tt = LDW(&(W[TWVL * 16])); + TF = VZMULIJ(TC, VFNMSCONJ(TE, TD)); + TW = VZMULJ(TV, VFMACONJ(TE, TD)); + Tz = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0])); + TA = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0])); + Ty = LDW(&(W[TWVL * 24])); + TX = LDW(&(W[TWVL * 22])); + T7 = VZMULJ(T4, VFMACONJ(T6, T5)); + Tu = VZMULIJ(Tt, VFNMSCONJ(T6, T5)); + Ta = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); + Tb = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); + T9 = LDW(&(W[TWVL * 2])); + TP = LDW(&(W[TWVL * 4])); + TB = VZMULIJ(Ty, VFNMSCONJ(TA, Tz)); + TY = VZMULJ(TX, VFMACONJ(TA, Tz)); + T1o = VADD(T3, T7); + T8 = VSUB(T3, T7); + T1v = VADD(Tw, Tu); + Tx = VSUB(Tu, Tw); + Tc = VZMULJ(T9, VFMACONJ(Tb, Ta)); + TQ = VZMULIJ(TP, VFNMSCONJ(Tb, Ta)); + T1w = VADD(TF, TB); + TG = VSUB(TB, TF); + T1p = VADD(TW, TY); + TZ = VSUB(TW, TY); + Tn = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); + To = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); + Tm = LDW(&(W[TWVL * 10])); + TI = LDW(&(W[TWVL * 12])); + T1J = VSUB(T1w, T1v); + T1x = VADD(T1v, T1w); + T12 = VFMA(LDK(KP414213562), Tx, TG); + TH = VFNMS(LDK(KP414213562), TG, Tx); + T1I = VSUB(T1o, T1p); + T1q = VADD(T1o, T1p); + Tp = VZMULJ(Tm, VFMACONJ(To, Tn)); + TJ = VZMULIJ(TI, VFNMSCONJ(To, Tn)); + Te = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)])); + Tf = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)])); + Td = LDW(&(W[TWVL * 18])); + TN = LDW(&(W[TWVL * 20])); + Tj = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)])); + Tk = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)])); + Ti = LDW(&(W[TWVL * 26])); + TK = LDW(&(W[TWVL * 28])); + } + Tg = VZMULJ(Td, VFMACONJ(Tf, Te)); + TO = VZMULIJ(TN, VFNMSCONJ(Tf, Te)); + Tl = VZMULJ(Ti, VFMACONJ(Tk, Tj)); + TL = VZMULIJ(TK, VFNMSCONJ(Tk, Tj)); + T1r = VADD(Tc, Tg); + Th = VSUB(Tc, Tg); + TR = VSUB(TO, TQ); + T1y = VADD(TQ, TO); + T1s = VADD(Tl, Tp); + Tq = VSUB(Tl, Tp); + TM = VSUB(TJ, TL); + T1z = VADD(TL, TJ); + T1N = VSUB(T1s, T1r); + T1t = VADD(T1r, T1s); + T10 = VSUB(Tq, Th); + Tr = VADD(Th, Tq); + T13 = VFNMS(LDK(KP414213562), TM, TR); + TS = VFMA(LDK(KP414213562), TR, TM); + T1K = VSUB(T1y, T1z); + T1A = VADD(T1y, T1z); + T1E = VADD(T1q, T1t); + T1u = VSUB(T1q, T1t); + T1f = VFMA(LDK(KP707106781), T10, TZ); + T11 = VFNMS(LDK(KP707106781), T10, TZ); + T1c = VFNMS(LDK(KP707106781), Tr, T8); + Ts = VFMA(LDK(KP707106781), Tr, T8); + T1d = VSUB(T12, T13); + T14 = VADD(T12, T13); + T1g = VSUB(TS, TH); + TT = VADD(TH, TS); + { + V T1O, T1L, T1F, T1B, T1k, T1e, T19, T15, T1l, T1h, T18, TU, T1T, T1P, T1S; + V T1M, T1H, T1G, T1D, T1C, T1m, T1n, T1j, T1i, T1a, T1b, T17, T16, T1U, T1V; + V T1R, T1Q; + T1O = VSUB(T1K, T1J); + T1L = VADD(T1J, T1K); + T1F = VADD(T1x, T1A); + T1B = VSUB(T1x, T1A); + T1k = VFNMS(LDK(KP923879532), T1d, T1c); + T1e = VFMA(LDK(KP923879532), T1d, T1c); + T19 = VFNMS(LDK(KP923879532), T14, T11); + T15 = VFMA(LDK(KP923879532), T14, T11); + T1l = VFNMS(LDK(KP923879532), T1g, T1f); + T1h = VFMA(LDK(KP923879532), T1g, T1f); + T18 = VFNMS(LDK(KP923879532), TT, Ts); + TU = VFMA(LDK(KP923879532), TT, Ts); + T1T = VFNMS(LDK(KP707106781), T1O, T1N); + T1P = VFMA(LDK(KP707106781), T1O, T1N); + T1S = VFNMS(LDK(KP707106781), T1L, T1I); + T1M = VFMA(LDK(KP707106781), T1L, T1I); + T1H = VCONJ(VMUL(LDK(KP500000000), VADD(T1F, T1E))); + T1G = VMUL(LDK(KP500000000), VSUB(T1E, T1F)); + T1D = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1B, T1u))); + T1C = VMUL(LDK(KP500000000), VFMAI(T1B, T1u)); + T1m = VMUL(LDK(KP500000000), VFNMSI(T1l, T1k)); + T1n = VCONJ(VMUL(LDK(KP500000000), VFMAI(T1l, T1k))); + T1j = VMUL(LDK(KP500000000), VFMAI(T1h, T1e)); + T1i = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1h, T1e))); + T1a = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T19, T18))); + T1b = VMUL(LDK(KP500000000), VFMAI(T19, T18)); + T17 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T15, TU))); + T16 = VMUL(LDK(KP500000000), VFNMSI(T15, TU)); + T1U = VMUL(LDK(KP500000000), VFNMSI(T1T, T1S)); + T1V = VCONJ(VMUL(LDK(KP500000000), VFMAI(T1T, T1S))); + T1R = VMUL(LDK(KP500000000), VFMAI(T1P, T1M)); + T1Q = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1P, T1M))); + ST(&(Rm[WS(rs, 7)]), T1H, -ms, &(Rm[WS(rs, 1)])); + ST(&(Rp[0]), T1G, ms, &(Rp[0])); + ST(&(Rm[WS(rs, 3)]), T1D, -ms, &(Rm[WS(rs, 1)])); + ST(&(Rp[WS(rs, 4)]), T1C, ms, &(Rp[0])); + ST(&(Rp[WS(rs, 5)]), T1m, ms, &(Rp[WS(rs, 1)])); + ST(&(Rm[WS(rs, 4)]), T1n, -ms, &(Rm[0])); + ST(&(Rp[WS(rs, 3)]), T1j, ms, &(Rp[WS(rs, 1)])); + ST(&(Rm[WS(rs, 2)]), T1i, -ms, &(Rm[0])); + ST(&(Rm[WS(rs, 6)]), T1a, -ms, &(Rm[0])); + ST(&(Rp[WS(rs, 7)]), T1b, ms, &(Rp[WS(rs, 1)])); + ST(&(Rm[0]), T17, -ms, &(Rm[0])); + ST(&(Rp[WS(rs, 1)]), T16, ms, &(Rp[WS(rs, 1)])); + ST(&(Rp[WS(rs, 6)]), T1U, ms, &(Rp[0])); + ST(&(Rm[WS(rs, 5)]), T1V, -ms, &(Rm[WS(rs, 1)])); + ST(&(Rp[WS(rs, 2)]), T1R, ms, &(Rp[0])); + ST(&(Rm[WS(rs, 1)]), T1Q, -ms, &(Rm[WS(rs, 1)])); + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(1, 1), + VTW(1, 2), + VTW(1, 3), + VTW(1, 4), + VTW(1, 5), + VTW(1, 6), + VTW(1, 7), + VTW(1, 8), + VTW(1, 9), + VTW(1, 10), + VTW(1, 11), + VTW(1, 12), + VTW(1, 13), + VTW(1, 14), + VTW(1, 15), + {TW_NEXT, VL, 0} +}; + +static const hc2c_desc desc = { 16, XSIMD_STRING("hc2cfdftv_16"), twinstr, &GENUS, {53, 46, 50, 0} }; + +void XSIMD(codelet_hc2cfdftv_16) (planner *p) { + X(khc2c_register) (p, hc2cfdftv_16, &desc, HC2C_VIA_DFT); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 16 -dit -name hc2cfdftv_16 -include hc2cfv.h */ + +/* + * This function contains 103 FP additions, 56 FP multiplications, + * (or, 99 additions, 52 multiplications, 4 fused multiply/add), + * 101 stack variables, 5 constants, and 32 memory accesses + */ +#include "hc2cfv.h" + +static void hc2cfdftv_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP707106781, +0.707106781186547524400844362104849039284835938); + DVK(KP353553390, +0.353553390593273762200422181052424519642417969); + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + DVK(KP382683432, +0.382683432365089771728459984030398866761344562); + DVK(KP923879532, +0.923879532511286756128183189396788286822416626); + { + INT m; + for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 30)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(64, rs)) { + V T1D, T1E, T1R, TP, T1b, Ta, T1w, T18, T1x, T1z, T1A, T1G, T1H, T1S, Tx; + V T13, T10, T1a, T1, T3, TA, TM, TL, TN, T6, T8, TC, TH, TG, TI; + V T2, Tz, TK, TJ, T7, TB, TF, TE, TD, TO, T4, T9, T5, T15, T17; + V T14, T16; + T1 = LD(&(Rp[0]), ms, &(Rp[0])); + T2 = LD(&(Rm[0]), -ms, &(Rm[0])); + T3 = VCONJ(T2); + Tz = LDW(&(W[0])); + TA = VZMULIJ(Tz, VSUB(T3, T1)); + TM = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0])); + TK = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0])); + TL = VCONJ(TK); + TJ = LDW(&(W[TWVL * 24])); + TN = VZMULIJ(TJ, VSUB(TL, TM)); + T6 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); + T7 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); + T8 = VCONJ(T7); + TB = LDW(&(W[TWVL * 16])); + TC = VZMULIJ(TB, VSUB(T8, T6)); + TH = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); + TF = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); + TG = VCONJ(TF); + TE = LDW(&(W[TWVL * 8])); + TI = VZMULIJ(TE, VSUB(TG, TH)); + T1D = VADD(TA, TC); + T1E = VADD(TI, TN); + T1R = VSUB(T1D, T1E); + TD = VSUB(TA, TC); + TO = VSUB(TI, TN); + TP = VFNMS(LDK(KP382683432), TO, VMUL(LDK(KP923879532), TD)); + T1b = VFMA(LDK(KP382683432), TD, VMUL(LDK(KP923879532), TO)); + T4 = VADD(T1, T3); + T5 = LDW(&(W[TWVL * 14])); + T9 = VZMULJ(T5, VADD(T6, T8)); + Ta = VMUL(LDK(KP500000000), VSUB(T4, T9)); + T1w = VADD(T4, T9); + T14 = LDW(&(W[TWVL * 6])); + T15 = VZMULJ(T14, VADD(TH, TG)); + T16 = LDW(&(W[TWVL * 22])); + T17 = VZMULJ(T16, VADD(TM, TL)); + T18 = VSUB(T15, T17); + T1x = VADD(T15, T17); + { + V Tf, TR, Tv, TY, Tk, TT, Tq, TW, Tc, Te, Td, Tb, TQ, Ts, Tu; + V Tt, Tr, TX, Th, Tj, Ti, Tg, TS, Tn, Tp, To, Tm, TV, Tl, Tw; + V TU, TZ; + Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); + Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); + Te = VCONJ(Td); + Tb = LDW(&(W[TWVL * 2])); + Tf = VZMULJ(Tb, VADD(Tc, Te)); + TQ = LDW(&(W[TWVL * 4])); + TR = VZMULIJ(TQ, VSUB(Te, Tc)); + Ts = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); + Tt = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); + Tu = VCONJ(Tt); + Tr = LDW(&(W[TWVL * 10])); + Tv = VZMULJ(Tr, VADD(Ts, Tu)); + TX = LDW(&(W[TWVL * 12])); + TY = VZMULIJ(TX, VSUB(Tu, Ts)); + Th = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)])); + Ti = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)])); + Tj = VCONJ(Ti); + Tg = LDW(&(W[TWVL * 18])); + Tk = VZMULJ(Tg, VADD(Th, Tj)); + TS = LDW(&(W[TWVL * 20])); + TT = VZMULIJ(TS, VSUB(Tj, Th)); + Tn = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)])); + To = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)])); + Tp = VCONJ(To); + Tm = LDW(&(W[TWVL * 26])); + Tq = VZMULJ(Tm, VADD(Tn, Tp)); + TV = LDW(&(W[TWVL * 28])); + TW = VZMULIJ(TV, VSUB(Tp, Tn)); + T1z = VADD(Tf, Tk); + T1A = VADD(Tq, Tv); + T1G = VADD(TR, TT); + T1H = VADD(TW, TY); + T1S = VSUB(T1H, T1G); + Tl = VSUB(Tf, Tk); + Tw = VSUB(Tq, Tv); + Tx = VMUL(LDK(KP353553390), VADD(Tl, Tw)); + T13 = VMUL(LDK(KP707106781), VSUB(Tw, Tl)); + TU = VSUB(TR, TT); + TZ = VSUB(TW, TY); + T10 = VFMA(LDK(KP382683432), TU, VMUL(LDK(KP923879532), TZ)); + T1a = VFNMS(LDK(KP923879532), TU, VMUL(LDK(KP382683432), TZ)); + } + { + V T1U, T20, T1X, T21, T1Q, T1T, T1V, T1W, T1Y, T23, T1Z, T22, T1C, T1M, T1J; + V T1N, T1y, T1B, T1F, T1I, T1K, T1P, T1L, T1O, T12, T1g, T1d, T1h, Ty, T11; + V T19, T1c, T1e, T1j, T1f, T1i, T1m, T1s, T1p, T1t, T1k, T1l, T1n, T1o, T1q; + V T1v, T1r, T1u; + T1Q = VMUL(LDK(KP500000000), VSUB(T1w, T1x)); + T1T = VMUL(LDK(KP353553390), VADD(T1R, T1S)); + T1U = VADD(T1Q, T1T); + T20 = VSUB(T1Q, T1T); + T1V = VSUB(T1A, T1z); + T1W = VMUL(LDK(KP707106781), VSUB(T1S, T1R)); + T1X = VMUL(LDK(KP500000000), VBYI(VADD(T1V, T1W))); + T21 = VMUL(LDK(KP500000000), VBYI(VSUB(T1W, T1V))); + T1Y = VCONJ(VSUB(T1U, T1X)); + ST(&(Rm[WS(rs, 1)]), T1Y, -ms, &(Rm[WS(rs, 1)])); + T23 = VADD(T20, T21); + ST(&(Rp[WS(rs, 6)]), T23, ms, &(Rp[0])); + T1Z = VADD(T1U, T1X); + ST(&(Rp[WS(rs, 2)]), T1Z, ms, &(Rp[0])); + T22 = VCONJ(VSUB(T20, T21)); + ST(&(Rm[WS(rs, 5)]), T22, -ms, &(Rm[WS(rs, 1)])); + T1y = VADD(T1w, T1x); + T1B = VADD(T1z, T1A); + T1C = VADD(T1y, T1B); + T1M = VSUB(T1y, T1B); + T1F = VADD(T1D, T1E); + T1I = VADD(T1G, T1H); + T1J = VADD(T1F, T1I); + T1N = VBYI(VSUB(T1I, T1F)); + T1K = VCONJ(VMUL(LDK(KP500000000), VSUB(T1C, T1J))); + ST(&(Rm[WS(rs, 7)]), T1K, -ms, &(Rm[WS(rs, 1)])); + T1P = VMUL(LDK(KP500000000), VADD(T1M, T1N)); + ST(&(Rp[WS(rs, 4)]), T1P, ms, &(Rp[0])); + T1L = VMUL(LDK(KP500000000), VADD(T1C, T1J)); + ST(&(Rp[0]), T1L, ms, &(Rp[0])); + T1O = VCONJ(VMUL(LDK(KP500000000), VSUB(T1M, T1N))); + ST(&(Rm[WS(rs, 3)]), T1O, -ms, &(Rm[WS(rs, 1)])); + Ty = VADD(Ta, Tx); + T11 = VMUL(LDK(KP500000000), VADD(TP, T10)); + T12 = VADD(Ty, T11); + T1g = VSUB(Ty, T11); + T19 = VSUB(T13, T18); + T1c = VSUB(T1a, T1b); + T1d = VMUL(LDK(KP500000000), VBYI(VADD(T19, T1c))); + T1h = VMUL(LDK(KP500000000), VBYI(VSUB(T1c, T19))); + T1e = VCONJ(VSUB(T12, T1d)); + ST(&(Rm[0]), T1e, -ms, &(Rm[0])); + T1j = VADD(T1g, T1h); + ST(&(Rp[WS(rs, 7)]), T1j, ms, &(Rp[WS(rs, 1)])); + T1f = VADD(T12, T1d); + ST(&(Rp[WS(rs, 1)]), T1f, ms, &(Rp[WS(rs, 1)])); + T1i = VCONJ(VSUB(T1g, T1h)); + ST(&(Rm[WS(rs, 6)]), T1i, -ms, &(Rm[0])); + T1k = VSUB(T10, TP); + T1l = VADD(T18, T13); + T1m = VMUL(LDK(KP500000000), VBYI(VSUB(T1k, T1l))); + T1s = VMUL(LDK(KP500000000), VBYI(VADD(T1l, T1k))); + T1n = VSUB(Ta, Tx); + T1o = VMUL(LDK(KP500000000), VADD(T1b, T1a)); + T1p = VSUB(T1n, T1o); + T1t = VADD(T1n, T1o); + T1q = VADD(T1m, T1p); + ST(&(Rp[WS(rs, 5)]), T1q, ms, &(Rp[WS(rs, 1)])); + T1v = VCONJ(VSUB(T1t, T1s)); + ST(&(Rm[WS(rs, 2)]), T1v, -ms, &(Rm[0])); + T1r = VCONJ(VSUB(T1p, T1m)); + ST(&(Rm[WS(rs, 4)]), T1r, -ms, &(Rm[0])); + T1u = VADD(T1s, T1t); + ST(&(Rp[WS(rs, 3)]), T1u, ms, &(Rp[WS(rs, 1)])); + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(1, 1), + VTW(1, 2), + VTW(1, 3), + VTW(1, 4), + VTW(1, 5), + VTW(1, 6), + VTW(1, 7), + VTW(1, 8), + VTW(1, 9), + VTW(1, 10), + VTW(1, 11), + VTW(1, 12), + VTW(1, 13), + VTW(1, 14), + VTW(1, 15), + {TW_NEXT, VL, 0} +}; + +static const hc2c_desc desc = { 16, XSIMD_STRING("hc2cfdftv_16"), twinstr, &GENUS, {99, 52, 4, 0} }; + +void XSIMD(codelet_hc2cfdftv_16) (planner *p) { + X(khc2c_register) (p, hc2cfdftv_16, &desc, HC2C_VIA_DFT); +} +#endif /* HAVE_FMA */