diff src/fftw-3.3.5/rdft/simd/common/hc2cfdftv_16.c @ 42:2cd0e3b3e1fd

Current fftw source
author Chris Cannam
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.5/rdft/simd/common/hc2cfdftv_16.c	Tue Oct 18 13:40:26 2016 +0100
@@ -0,0 +1,432 @@
+/*
+ * Copyright (c) 2003, 2007-14 Matteo Frigo
+ * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sat Jul 30 16:52:40 EDT 2016 */
+
+#include "codelet-rdft.h"
+
+#ifdef HAVE_FMA
+
+/* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 16 -dit -name hc2cfdftv_16 -include hc2cfv.h */
+
+/*
+ * This function contains 103 FP additions, 96 FP multiplications,
+ * (or, 53 additions, 46 multiplications, 50 fused multiply/add),
+ * 92 stack variables, 4 constants, and 32 memory accesses
+ */
+#include "hc2cfv.h"
+
+static void hc2cfdftv_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
+     DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
+     DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
+     {
+	  INT m;
+	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 30)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(64, rs)) {
+	       V T8, Tc, TQ, TZ, T1J, T1x, T12, TH, T1I, T1q, Tp, TJ, Te, Tf, Td;
+	       V TN, Tj, Tk, Ti, TK, Tg, TO, Tl, TL, T1r, Th, TR, T1y, T1s, Tq;
+	       V TM, T1z, T1N, T1t, T10, Tr, T13, TS, T1K, T1A, T1E, T1u, T1f, T11, T1c;
+	       V Ts, T1d, T14, T1g, TT;
+	       {
+		    V T3, Tw, TF, TW, Tz, TA, Ty, TX, T7, Tu, T1, T2, Tv, TD, TE;
+		    V TC, TV, T5, T6, T4, Tt, TB, TY, T1o, T1v, Tx, Ta, Tb, T9, TP;
+		    V T1w, TG, T1p, Tn, To, Tm, TI;
+		    T1 = LD(&(Rp[0]), ms, &(Rp[0]));
+		    T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
+		    Tv = LDW(&(W[0]));
+		    TD = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
+		    TE = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
+		    TC = LDW(&(W[TWVL * 8]));
+		    TV = LDW(&(W[TWVL * 6]));
+		    T5 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
+		    T6 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
+		    T3 = VFMACONJ(T2, T1);
+		    Tw = VZMULIJ(Tv, VFNMSCONJ(T2, T1));
+		    T4 = LDW(&(W[TWVL * 14]));
+		    Tt = LDW(&(W[TWVL * 16]));
+		    TF = VZMULIJ(TC, VFNMSCONJ(TE, TD));
+		    TW = VZMULJ(TV, VFMACONJ(TE, TD));
+		    Tz = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0]));
+		    TA = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0]));
+		    Ty = LDW(&(W[TWVL * 24]));
+		    TX = LDW(&(W[TWVL * 22]));
+		    T7 = VZMULJ(T4, VFMACONJ(T6, T5));
+		    Tu = VZMULIJ(Tt, VFNMSCONJ(T6, T5));
+		    Ta = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
+		    Tb = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
+		    T9 = LDW(&(W[TWVL * 2]));
+		    TP = LDW(&(W[TWVL * 4]));
+		    TB = VZMULIJ(Ty, VFNMSCONJ(TA, Tz));
+		    TY = VZMULJ(TX, VFMACONJ(TA, Tz));
+		    T1o = VADD(T3, T7);
+		    T8 = VSUB(T3, T7);
+		    T1v = VADD(Tw, Tu);
+		    Tx = VSUB(Tu, Tw);
+		    Tc = VZMULJ(T9, VFMACONJ(Tb, Ta));
+		    TQ = VZMULIJ(TP, VFNMSCONJ(Tb, Ta));
+		    T1w = VADD(TF, TB);
+		    TG = VSUB(TB, TF);
+		    T1p = VADD(TW, TY);
+		    TZ = VSUB(TW, TY);
+		    Tn = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
+		    To = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
+		    Tm = LDW(&(W[TWVL * 10]));
+		    TI = LDW(&(W[TWVL * 12]));
+		    T1J = VSUB(T1w, T1v);
+		    T1x = VADD(T1v, T1w);
+		    T12 = VFMA(LDK(KP414213562), Tx, TG);
+		    TH = VFNMS(LDK(KP414213562), TG, Tx);
+		    T1I = VSUB(T1o, T1p);
+		    T1q = VADD(T1o, T1p);
+		    Tp = VZMULJ(Tm, VFMACONJ(To, Tn));
+		    TJ = VZMULIJ(TI, VFNMSCONJ(To, Tn));
+		    Te = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
+		    Tf = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
+		    Td = LDW(&(W[TWVL * 18]));
+		    TN = LDW(&(W[TWVL * 20]));
+		    Tj = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)]));
+		    Tk = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)]));
+		    Ti = LDW(&(W[TWVL * 26]));
+		    TK = LDW(&(W[TWVL * 28]));
+	       }
+	       Tg = VZMULJ(Td, VFMACONJ(Tf, Te));
+	       TO = VZMULIJ(TN, VFNMSCONJ(Tf, Te));
+	       Tl = VZMULJ(Ti, VFMACONJ(Tk, Tj));
+	       TL = VZMULIJ(TK, VFNMSCONJ(Tk, Tj));
+	       T1r = VADD(Tc, Tg);
+	       Th = VSUB(Tc, Tg);
+	       TR = VSUB(TO, TQ);
+	       T1y = VADD(TQ, TO);
+	       T1s = VADD(Tl, Tp);
+	       Tq = VSUB(Tl, Tp);
+	       TM = VSUB(TJ, TL);
+	       T1z = VADD(TL, TJ);
+	       T1N = VSUB(T1s, T1r);
+	       T1t = VADD(T1r, T1s);
+	       T10 = VSUB(Tq, Th);
+	       Tr = VADD(Th, Tq);
+	       T13 = VFNMS(LDK(KP414213562), TM, TR);
+	       TS = VFMA(LDK(KP414213562), TR, TM);
+	       T1K = VSUB(T1y, T1z);
+	       T1A = VADD(T1y, T1z);
+	       T1E = VADD(T1q, T1t);
+	       T1u = VSUB(T1q, T1t);
+	       T1f = VFMA(LDK(KP707106781), T10, TZ);
+	       T11 = VFNMS(LDK(KP707106781), T10, TZ);
+	       T1c = VFNMS(LDK(KP707106781), Tr, T8);
+	       Ts = VFMA(LDK(KP707106781), Tr, T8);
+	       T1d = VSUB(T12, T13);
+	       T14 = VADD(T12, T13);
+	       T1g = VSUB(TS, TH);
+	       TT = VADD(TH, TS);
+	       {
+		    V T1O, T1L, T1F, T1B, T1k, T1e, T19, T15, T1l, T1h, T18, TU, T1T, T1P, T1S;
+		    V T1M, T1H, T1G, T1D, T1C, T1m, T1n, T1j, T1i, T1a, T1b, T17, T16, T1U, T1V;
+		    V T1R, T1Q;
+		    T1O = VSUB(T1K, T1J);
+		    T1L = VADD(T1J, T1K);
+		    T1F = VADD(T1x, T1A);
+		    T1B = VSUB(T1x, T1A);
+		    T1k = VFNMS(LDK(KP923879532), T1d, T1c);
+		    T1e = VFMA(LDK(KP923879532), T1d, T1c);
+		    T19 = VFNMS(LDK(KP923879532), T14, T11);
+		    T15 = VFMA(LDK(KP923879532), T14, T11);
+		    T1l = VFNMS(LDK(KP923879532), T1g, T1f);
+		    T1h = VFMA(LDK(KP923879532), T1g, T1f);
+		    T18 = VFNMS(LDK(KP923879532), TT, Ts);
+		    TU = VFMA(LDK(KP923879532), TT, Ts);
+		    T1T = VFNMS(LDK(KP707106781), T1O, T1N);
+		    T1P = VFMA(LDK(KP707106781), T1O, T1N);
+		    T1S = VFNMS(LDK(KP707106781), T1L, T1I);
+		    T1M = VFMA(LDK(KP707106781), T1L, T1I);
+		    T1H = VCONJ(VMUL(LDK(KP500000000), VADD(T1F, T1E)));
+		    T1G = VMUL(LDK(KP500000000), VSUB(T1E, T1F));
+		    T1D = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1B, T1u)));
+		    T1C = VMUL(LDK(KP500000000), VFMAI(T1B, T1u));
+		    T1m = VMUL(LDK(KP500000000), VFNMSI(T1l, T1k));
+		    T1n = VCONJ(VMUL(LDK(KP500000000), VFMAI(T1l, T1k)));
+		    T1j = VMUL(LDK(KP500000000), VFMAI(T1h, T1e));
+		    T1i = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1h, T1e)));
+		    T1a = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T19, T18)));
+		    T1b = VMUL(LDK(KP500000000), VFMAI(T19, T18));
+		    T17 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T15, TU)));
+		    T16 = VMUL(LDK(KP500000000), VFNMSI(T15, TU));
+		    T1U = VMUL(LDK(KP500000000), VFNMSI(T1T, T1S));
+		    T1V = VCONJ(VMUL(LDK(KP500000000), VFMAI(T1T, T1S)));
+		    T1R = VMUL(LDK(KP500000000), VFMAI(T1P, T1M));
+		    T1Q = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1P, T1M)));
+		    ST(&(Rm[WS(rs, 7)]), T1H, -ms, &(Rm[WS(rs, 1)]));
+		    ST(&(Rp[0]), T1G, ms, &(Rp[0]));
+		    ST(&(Rm[WS(rs, 3)]), T1D, -ms, &(Rm[WS(rs, 1)]));
+		    ST(&(Rp[WS(rs, 4)]), T1C, ms, &(Rp[0]));
+		    ST(&(Rp[WS(rs, 5)]), T1m, ms, &(Rp[WS(rs, 1)]));
+		    ST(&(Rm[WS(rs, 4)]), T1n, -ms, &(Rm[0]));
+		    ST(&(Rp[WS(rs, 3)]), T1j, ms, &(Rp[WS(rs, 1)]));
+		    ST(&(Rm[WS(rs, 2)]), T1i, -ms, &(Rm[0]));
+		    ST(&(Rm[WS(rs, 6)]), T1a, -ms, &(Rm[0]));
+		    ST(&(Rp[WS(rs, 7)]), T1b, ms, &(Rp[WS(rs, 1)]));
+		    ST(&(Rm[0]), T17, -ms, &(Rm[0]));
+		    ST(&(Rp[WS(rs, 1)]), T16, ms, &(Rp[WS(rs, 1)]));
+		    ST(&(Rp[WS(rs, 6)]), T1U, ms, &(Rp[0]));
+		    ST(&(Rm[WS(rs, 5)]), T1V, -ms, &(Rm[WS(rs, 1)]));
+		    ST(&(Rp[WS(rs, 2)]), T1R, ms, &(Rp[0]));
+		    ST(&(Rm[WS(rs, 1)]), T1Q, -ms, &(Rm[WS(rs, 1)]));
+	       }
+	  }
+     }
+     VLEAVE();
+}
+
+static const tw_instr twinstr[] = {
+     VTW(1, 1),
+     VTW(1, 2),
+     VTW(1, 3),
+     VTW(1, 4),
+     VTW(1, 5),
+     VTW(1, 6),
+     VTW(1, 7),
+     VTW(1, 8),
+     VTW(1, 9),
+     VTW(1, 10),
+     VTW(1, 11),
+     VTW(1, 12),
+     VTW(1, 13),
+     VTW(1, 14),
+     VTW(1, 15),
+     {TW_NEXT, VL, 0}
+};
+
+static const hc2c_desc desc = { 16, XSIMD_STRING("hc2cfdftv_16"), twinstr, &GENUS, {53, 46, 50, 0} };
+
+void XSIMD(codelet_hc2cfdftv_16) (planner *p) {
+     X(khc2c_register) (p, hc2cfdftv_16, &desc, HC2C_VIA_DFT);
+}
+#else				/* HAVE_FMA */
+
+/* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 16 -dit -name hc2cfdftv_16 -include hc2cfv.h */
+
+/*
+ * This function contains 103 FP additions, 56 FP multiplications,
+ * (or, 99 additions, 52 multiplications, 4 fused multiply/add),
+ * 101 stack variables, 5 constants, and 32 memory accesses
+ */
+#include "hc2cfv.h"
+
+static void hc2cfdftv_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
+     DVK(KP353553390, +0.353553390593273762200422181052424519642417969);
+     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     DVK(KP382683432, +0.382683432365089771728459984030398866761344562);
+     DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
+     {
+	  INT m;
+	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 30)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(64, rs)) {
+	       V T1D, T1E, T1R, TP, T1b, Ta, T1w, T18, T1x, T1z, T1A, T1G, T1H, T1S, Tx;
+	       V T13, T10, T1a, T1, T3, TA, TM, TL, TN, T6, T8, TC, TH, TG, TI;
+	       V T2, Tz, TK, TJ, T7, TB, TF, TE, TD, TO, T4, T9, T5, T15, T17;
+	       V T14, T16;
+	       T1 = LD(&(Rp[0]), ms, &(Rp[0]));
+	       T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
+	       T3 = VCONJ(T2);
+	       Tz = LDW(&(W[0]));
+	       TA = VZMULIJ(Tz, VSUB(T3, T1));
+	       TM = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0]));
+	       TK = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0]));
+	       TL = VCONJ(TK);
+	       TJ = LDW(&(W[TWVL * 24]));
+	       TN = VZMULIJ(TJ, VSUB(TL, TM));
+	       T6 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
+	       T7 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
+	       T8 = VCONJ(T7);
+	       TB = LDW(&(W[TWVL * 16]));
+	       TC = VZMULIJ(TB, VSUB(T8, T6));
+	       TH = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
+	       TF = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
+	       TG = VCONJ(TF);
+	       TE = LDW(&(W[TWVL * 8]));
+	       TI = VZMULIJ(TE, VSUB(TG, TH));
+	       T1D = VADD(TA, TC);
+	       T1E = VADD(TI, TN);
+	       T1R = VSUB(T1D, T1E);
+	       TD = VSUB(TA, TC);
+	       TO = VSUB(TI, TN);
+	       TP = VFNMS(LDK(KP382683432), TO, VMUL(LDK(KP923879532), TD));
+	       T1b = VFMA(LDK(KP382683432), TD, VMUL(LDK(KP923879532), TO));
+	       T4 = VADD(T1, T3);
+	       T5 = LDW(&(W[TWVL * 14]));
+	       T9 = VZMULJ(T5, VADD(T6, T8));
+	       Ta = VMUL(LDK(KP500000000), VSUB(T4, T9));
+	       T1w = VADD(T4, T9);
+	       T14 = LDW(&(W[TWVL * 6]));
+	       T15 = VZMULJ(T14, VADD(TH, TG));
+	       T16 = LDW(&(W[TWVL * 22]));
+	       T17 = VZMULJ(T16, VADD(TM, TL));
+	       T18 = VSUB(T15, T17);
+	       T1x = VADD(T15, T17);
+	       {
+		    V Tf, TR, Tv, TY, Tk, TT, Tq, TW, Tc, Te, Td, Tb, TQ, Ts, Tu;
+		    V Tt, Tr, TX, Th, Tj, Ti, Tg, TS, Tn, Tp, To, Tm, TV, Tl, Tw;
+		    V TU, TZ;
+		    Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
+		    Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
+		    Te = VCONJ(Td);
+		    Tb = LDW(&(W[TWVL * 2]));
+		    Tf = VZMULJ(Tb, VADD(Tc, Te));
+		    TQ = LDW(&(W[TWVL * 4]));
+		    TR = VZMULIJ(TQ, VSUB(Te, Tc));
+		    Ts = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
+		    Tt = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
+		    Tu = VCONJ(Tt);
+		    Tr = LDW(&(W[TWVL * 10]));
+		    Tv = VZMULJ(Tr, VADD(Ts, Tu));
+		    TX = LDW(&(W[TWVL * 12]));
+		    TY = VZMULIJ(TX, VSUB(Tu, Ts));
+		    Th = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
+		    Ti = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
+		    Tj = VCONJ(Ti);
+		    Tg = LDW(&(W[TWVL * 18]));
+		    Tk = VZMULJ(Tg, VADD(Th, Tj));
+		    TS = LDW(&(W[TWVL * 20]));
+		    TT = VZMULIJ(TS, VSUB(Tj, Th));
+		    Tn = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)]));
+		    To = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)]));
+		    Tp = VCONJ(To);
+		    Tm = LDW(&(W[TWVL * 26]));
+		    Tq = VZMULJ(Tm, VADD(Tn, Tp));
+		    TV = LDW(&(W[TWVL * 28]));
+		    TW = VZMULIJ(TV, VSUB(Tp, Tn));
+		    T1z = VADD(Tf, Tk);
+		    T1A = VADD(Tq, Tv);
+		    T1G = VADD(TR, TT);
+		    T1H = VADD(TW, TY);
+		    T1S = VSUB(T1H, T1G);
+		    Tl = VSUB(Tf, Tk);
+		    Tw = VSUB(Tq, Tv);
+		    Tx = VMUL(LDK(KP353553390), VADD(Tl, Tw));
+		    T13 = VMUL(LDK(KP707106781), VSUB(Tw, Tl));
+		    TU = VSUB(TR, TT);
+		    TZ = VSUB(TW, TY);
+		    T10 = VFMA(LDK(KP382683432), TU, VMUL(LDK(KP923879532), TZ));
+		    T1a = VFNMS(LDK(KP923879532), TU, VMUL(LDK(KP382683432), TZ));
+	       }
+	       {
+		    V T1U, T20, T1X, T21, T1Q, T1T, T1V, T1W, T1Y, T23, T1Z, T22, T1C, T1M, T1J;
+		    V T1N, T1y, T1B, T1F, T1I, T1K, T1P, T1L, T1O, T12, T1g, T1d, T1h, Ty, T11;
+		    V T19, T1c, T1e, T1j, T1f, T1i, T1m, T1s, T1p, T1t, T1k, T1l, T1n, T1o, T1q;
+		    V T1v, T1r, T1u;
+		    T1Q = VMUL(LDK(KP500000000), VSUB(T1w, T1x));
+		    T1T = VMUL(LDK(KP353553390), VADD(T1R, T1S));
+		    T1U = VADD(T1Q, T1T);
+		    T20 = VSUB(T1Q, T1T);
+		    T1V = VSUB(T1A, T1z);
+		    T1W = VMUL(LDK(KP707106781), VSUB(T1S, T1R));
+		    T1X = VMUL(LDK(KP500000000), VBYI(VADD(T1V, T1W)));
+		    T21 = VMUL(LDK(KP500000000), VBYI(VSUB(T1W, T1V)));
+		    T1Y = VCONJ(VSUB(T1U, T1X));
+		    ST(&(Rm[WS(rs, 1)]), T1Y, -ms, &(Rm[WS(rs, 1)]));
+		    T23 = VADD(T20, T21);
+		    ST(&(Rp[WS(rs, 6)]), T23, ms, &(Rp[0]));
+		    T1Z = VADD(T1U, T1X);
+		    ST(&(Rp[WS(rs, 2)]), T1Z, ms, &(Rp[0]));
+		    T22 = VCONJ(VSUB(T20, T21));
+		    ST(&(Rm[WS(rs, 5)]), T22, -ms, &(Rm[WS(rs, 1)]));
+		    T1y = VADD(T1w, T1x);
+		    T1B = VADD(T1z, T1A);
+		    T1C = VADD(T1y, T1B);
+		    T1M = VSUB(T1y, T1B);
+		    T1F = VADD(T1D, T1E);
+		    T1I = VADD(T1G, T1H);
+		    T1J = VADD(T1F, T1I);
+		    T1N = VBYI(VSUB(T1I, T1F));
+		    T1K = VCONJ(VMUL(LDK(KP500000000), VSUB(T1C, T1J)));
+		    ST(&(Rm[WS(rs, 7)]), T1K, -ms, &(Rm[WS(rs, 1)]));
+		    T1P = VMUL(LDK(KP500000000), VADD(T1M, T1N));
+		    ST(&(Rp[WS(rs, 4)]), T1P, ms, &(Rp[0]));
+		    T1L = VMUL(LDK(KP500000000), VADD(T1C, T1J));
+		    ST(&(Rp[0]), T1L, ms, &(Rp[0]));
+		    T1O = VCONJ(VMUL(LDK(KP500000000), VSUB(T1M, T1N)));
+		    ST(&(Rm[WS(rs, 3)]), T1O, -ms, &(Rm[WS(rs, 1)]));
+		    Ty = VADD(Ta, Tx);
+		    T11 = VMUL(LDK(KP500000000), VADD(TP, T10));
+		    T12 = VADD(Ty, T11);
+		    T1g = VSUB(Ty, T11);
+		    T19 = VSUB(T13, T18);
+		    T1c = VSUB(T1a, T1b);
+		    T1d = VMUL(LDK(KP500000000), VBYI(VADD(T19, T1c)));
+		    T1h = VMUL(LDK(KP500000000), VBYI(VSUB(T1c, T19)));
+		    T1e = VCONJ(VSUB(T12, T1d));
+		    ST(&(Rm[0]), T1e, -ms, &(Rm[0]));
+		    T1j = VADD(T1g, T1h);
+		    ST(&(Rp[WS(rs, 7)]), T1j, ms, &(Rp[WS(rs, 1)]));
+		    T1f = VADD(T12, T1d);
+		    ST(&(Rp[WS(rs, 1)]), T1f, ms, &(Rp[WS(rs, 1)]));
+		    T1i = VCONJ(VSUB(T1g, T1h));
+		    ST(&(Rm[WS(rs, 6)]), T1i, -ms, &(Rm[0]));
+		    T1k = VSUB(T10, TP);
+		    T1l = VADD(T18, T13);
+		    T1m = VMUL(LDK(KP500000000), VBYI(VSUB(T1k, T1l)));
+		    T1s = VMUL(LDK(KP500000000), VBYI(VADD(T1l, T1k)));
+		    T1n = VSUB(Ta, Tx);
+		    T1o = VMUL(LDK(KP500000000), VADD(T1b, T1a));
+		    T1p = VSUB(T1n, T1o);
+		    T1t = VADD(T1n, T1o);
+		    T1q = VADD(T1m, T1p);
+		    ST(&(Rp[WS(rs, 5)]), T1q, ms, &(Rp[WS(rs, 1)]));
+		    T1v = VCONJ(VSUB(T1t, T1s));
+		    ST(&(Rm[WS(rs, 2)]), T1v, -ms, &(Rm[0]));
+		    T1r = VCONJ(VSUB(T1p, T1m));
+		    ST(&(Rm[WS(rs, 4)]), T1r, -ms, &(Rm[0]));
+		    T1u = VADD(T1s, T1t);
+		    ST(&(Rp[WS(rs, 3)]), T1u, ms, &(Rp[WS(rs, 1)]));
+	       }
+	  }
+     }
+     VLEAVE();
+}
+
+static const tw_instr twinstr[] = {
+     VTW(1, 1),
+     VTW(1, 2),
+     VTW(1, 3),
+     VTW(1, 4),
+     VTW(1, 5),
+     VTW(1, 6),
+     VTW(1, 7),
+     VTW(1, 8),
+     VTW(1, 9),
+     VTW(1, 10),
+     VTW(1, 11),
+     VTW(1, 12),
+     VTW(1, 13),
+     VTW(1, 14),
+     VTW(1, 15),
+     {TW_NEXT, VL, 0}
+};
+
+static const hc2c_desc desc = { 16, XSIMD_STRING("hc2cfdftv_16"), twinstr, &GENUS, {99, 52, 4, 0} };
+
+void XSIMD(codelet_hc2cfdftv_16) (planner *p) {
+     X(khc2c_register) (p, hc2cfdftv_16, &desc, HC2C_VIA_DFT);
+}
+#endif				/* HAVE_FMA */